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Abstract

We compute the Dijkgraaf–Witten invariants of surfaces in terms of projective representations of groups. As an application we
prove that the complex Dijkgraaf–Witten invariants of surfaces of positive genus are positive integers.
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1. Introduction

Dijkgraaf and Witten [2] derived homotopy invariants of 3-manifolds from 3-dimensional cohomology classes of
finite groups. Their construction provides examples of path integrals reduced to finite sums. It extends to arbitrary
dimensions as follows. Fix a field F and let F∗

= F − {0} be the multiplicative group of non-zero elements
of F . Fix a finite group G whose order #G is invertible in F . Pick an Eilenberg–MacLane CW-space X of type
K (G, 1) with base point x ∈ X . Consider a closed connected oriented topological manifold M of dimension n ≥ 1
with base point m0 ∈ M and set π = π1(M, m0). Observe that for any group homomorphism γ : π → G,
there is a mapping fγ : (M, m0) → (X, x) (unique up to homotopy) such that the induced homomorphism
( fγ )# : π → π1(X, x) = G is equal to γ . The Dijkgraaf–Witten invariant Zα(M) ∈ F determined by a cohomology
class α ∈ Hn(G; F∗) = Hn(X; F∗) is defined by

Zα(M) = (#G)−1
∑

γ∈Hom(π,G)

〈( fγ )∗(α), [M]〉. (1.1)

Here Hom(π, G) is the (finite) set of all group homomorphisms π → G and

〈( fγ )∗(α), [M]〉 ∈ F∗
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is the value of ( fγ )∗(α) ∈ Hn(M; F∗) on the fundamental class [M] ∈ Hn(M; Z). The addition on the right-hand
side of (1.1) is the addition in F . One may say that Zα(M) counts the homomorphisms γ : π → G with weights
(#G)−1

〈( fγ )∗(α), [M]〉. In particular, for γ = 1, we have 〈( fγ )∗(α), [M]〉 = 1F , where 1F ∈ F is the unit of F .
Thus, γ = 1 contributes the summand (#G)−1

· 1F to Zα(M).
It is clear from the definitions that Zα(M) depends neither on the choice of the base point m0 ∈ M nor on the

choice of the Eilenberg–MacLane space X . Moreover, Zα(M) depends only on α and the homotopy type of M . For
example, if M is simply connected, that is if π = {1}, then Zα(M) = (#G)−1

· 1F for all α. If G = {1}, then
Zα(M) = 1F for all M .

In this paper we study the case n = 2. We begin with elementary algebraic preliminaries. If p ≥ 0 is the
characteristic of the field F , then the formula m 7→ m · 1F for m ∈ Z/pZ, defines an isomorphism of Z/pZ onto
the ring (Z/pZ) · 1F ⊂ F additively generated by 1F . We identify Z/pZ with (Z/pZ) · 1F via this isomorphism. In
particular, if p = 0, then Z = Z · 1F ⊂ F .

Theorem 1.1. Let F be a field of characteristic p ≥ 0 and α ∈ H2(G; F∗). If p = 0, then Zα(M) ∈ F is a positive
integer for all closed connected oriented surfaces M 6= S2. If p > 0, then Zα(M) ∈ Z/pZ ⊂ F for all closed
connected oriented surfaces M.

The case of the sphere M = S2 stays somewhat apart. Since S2 is simply connected, Zα(S2) = (#G)−1
· 1F for all

α. If p > 0, then by the assumptions on G, the number #G is invertible in Z/pZ and Zα(S2) ∈ Z/pZ ⊂ F . If p = 0,
then Zα(S2) is not an integer except for G = {1}.

Applying Theorem 1.1 to F = C, we obtain that the complex number Zα(M) is a positive integer for all surfaces
M 6= S2 and all α ∈ H2(G; C∗).

A curious feature of Theorem 1.1 is that its statement uses only classical notions of algebraic topology while its
proof, given below, is based on ideas and techniques from quantum topology. I do not know how to prove this theorem
using only the standard tools of algebraic topology.

Results similar to Theorem 1.1 are familiar in the study of 3-dimensional topological quantum field theories
(TQFTs), where partition functions on surfaces compute dimensions of certain vector spaces associated with the
surfaces. It would be interesting to give an interpretation of Zα(M) as the dimension of a vector space naturally
associated with M .

The proof of Theorem 1.1 is based on a Verlinde-type formula for Zα(M) stated in terms of projective
representations of G. Let, as above, F be a field (not necessarily algebraically closed). Fix a 2-cocycle c : G×G → F∗

so that for all g1, g2, g3 ∈ G,

c(g1, g2)c(g1g2, g3) = c(g1, g2g3)c(g2, g3). (1.2)

We will always assume that c is normalized in the sense that c(g, 1) = c(1, g) = 1 for all g ∈ G. (Any cohomology
class in H2(G; F∗) can be represented by a normalized cocycle.) A mapping ρ : G → GL(W ), where W is a finite-
dimensional vector space over F , is called a c-representation of G if ρ(1) = idW and ρ(g1g2) = c(g1, g2)ρ(g1)ρ(g2)

for any g1, g2 ∈ G. The dimension of W over F is denoted dim(ρ). Two c-representations ρ : G → GL(W )

and ρ′
: G → GL(W ′) are equivalent if there is an isomorphism of vector spaces j : W → W ′ such that

ρ′(g) = jρ(g) j−1 for all g ∈ G. It is clear that dim(ρ) depends only on the equivalence class of ρ.
A c-representation ρ : G → GL(W ) is irreducible if 0 and W are the only vector subspaces of W invariant under

ρ(G). It is obvious that a c-representation equivalent to an irreducible one is itself irreducible. The set of equivalence
classes of irreducible c-representations of G is denoted Ĝc. We explain below that Ĝc is a finite non-empty set.

The 2-cocycle c represents a cohomology class [c] ∈ H2(G; F∗). The theory of c-representations of G depends
only on [c]. Indeed, any two normalized 2-cocycles c, c′

: G × G → F∗ representing the same cohomology class
satisfy

c(g1, g2) = c′(g1, g2)b(g1)b(g2)(b(g1g2))
−1

for all g1, g2 ∈ G and a mapping b : G → F∗ such that b(1) = 1. A c-representation ρ of G gives rise to a c′-
representation ρ′ of G by ρ′(g) = b(g)ρ(g) for g ∈ G. This establishes a bijection between c-representations and
c′-representations and induces a bijection Ĝc ≈ Ĝc′ .
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Theorem 1.2. Let F be an algebraically closed field such that #G is invertible in F. For any normalized 2-cocycle
c : G × G → F∗ and any closed connected oriented surface M,

Z[c](M) = (#G)−χ(M)
∑
ρ∈Ĝc

(dim ρ)χ(M)
· 1F , (1.3)

where χ(M) is the Euler characteristic of M.

It is known that the integer dim ρ divides #G in Z for any ρ ∈ Ĝc, see, for instance, [8, p. 296]. Therefore dim ρ is
invertible in F so that the expression on the right-hand side of (1.3) is well-defined for all values of χ(M).

For M = S1
× S1, Formula (1.3) gives Z[c](S1

× S1) = #Ĝc(mod p), where p ≥ 0 is the characteristic of F . For
M = S2, Formula (1.3) can be rewritten as

∑
ρ∈Ĝc

(dim ρ)2
= #G(mod p). If p = 0, this gives∑

ρ∈Ĝc

(dim ρ)2
= #G. (1.4)

We show below that (1.4) holds also when p > 0.
Denote Mk a closed connected oriented surface of genus k ≥ 0. If k ≥ 1, then −χ(M) = 2k − 2 ≥ 0 and

Z[c](Mk) =

∑
ρ∈Ĝc

(
#G

dim ρ

)2k−2

· 1F

is a non-empty sum of positive integers times 1F . This implies Theorem 1.1 for algebraically closed F . The
general case of Theorem 1.1 follows by taking the algebraic closure of the ground field (this does not change the
Dijkgraaf–Witten invariant).

For the trivial cocycle c = 1, we have [c] = 0 and Ĝ = Ĝc is the set of all irreducible (finite-dimensional)
linear representations of G over F considered up to linear equivalence. Clearly, 〈( fγ )∗([c]), [M]〉 = 1 ∈ F∗ for
any closed connected oriented surface M and any homomorphism γ from π = π1(M) to G. Thus, Z0(M) =

(#G)−1# Hom(π, G). Formula (1.3) gives

# Hom(π, G) = #G
∑
ρ∈Ĝ

(
#G

dim ρ

)−χ(M)

(mod p), (1.5)

where p ≥ 0 is the characteristic of F . For M = S1
× S1 and F = C, Formula (1.5) is due to Frobenius. For surfaces

of higher genus, this formula was first pointed out by Mednykh [9], see [6] for a direct algebraic proof and [4, Section
5] for a proof based on topological field theory.

One can deduce further properties of Z[c](M) from Theorem 1.2. Assume that F is an algebraically closed field of
characteristic 0 and k is a positive integer. By Eq. (1.4), we have (#G)1/2

≥ dim ρ ≥ 1 for all ρ ∈ Ĝc and therefore

#Ĝc(#G)2k−2
≥ Z[c](Mk) ≥ #Ĝc(#G)k−1.

If [c] 6= 0, then dim ρ ≥ 2 for all ρ ∈ Ĝc and we obtain a more precise estimate from above #Ĝc(#G/2)2k−2
≥

Z[c](Mk).
If #G = q N , where q is a prime integer and N ≥ 1, then Z[c](Mk) ∈ Z is divisible by q N/2 for even N and by

q(N+1)/2 for odd N .
Formula (1.3) is suggested by the fact that the Dijkgraaf–Witten invariant (in an arbitrary dimension n) can be

extended to an n-dimensional TQFT, see [2,13,4,3]. 2-dimensional TQFTs are known to arise from semisimple
algebras, see [5]. We show that the 2-dimensional Dijkgraaf–Witten invariant Z[c] arises from the c-twisted group
algebra of G. Then we split this algebra as a direct sum of matrix algebras numerated by the elements of Ĝc and use
a computation of the state sum invariants of surfaces derived from matrix algebras. Note that the proof of Eq. (1.3),
detailed in Sections 2 and 3, actually does not use the notion of a TQFT. A version of these results for non-orientable
surfaces is discussed in Section 4.

The author is indebted to Noah Snyder for a useful discussion of the non-orientable case.



2422 V. Turaev / Journal of Geometry and Physics 57 (2007) 2419–2430

2. State sum invariants of surfaces

We recall the state sum invariants of oriented surfaces associated with semisimple algebras, see [5].
Let A be a finite-dimensional algebra over a field F . For a ∈ A, let T (a) ∈ F be the trace of the F-linear

homomorphism A → A sending any x ∈ A to ax . The resulting F-linear mapping T : A → F is called the trace
homomorphism. Clearly, T (ab) = T (ba) for all a, b ∈ A. Therefore the bilinear form T (2)

: A⊗A→ F , defined by
T (2)(a⊗b) = T (ab) is symmetric. Assume thatA is semisimple in the sense that the form T (2) is non-degenerate. We
use the adjoint isomorphism ad T (2) to identify A with the dual vector space HomF (A, F). Using this identification
and dualizing T (2)

: A⊗A→ F , we obtain a homomorphism F → A⊗A. It sends 1 ∈ F to a vector

v =

∑
i

v1
i ⊗ v2

i ∈ A⊗A,

where i runs over a finite set of indices. The vector v = v(A) is uniquely defined by the identity

T (ab) =

∑
i

T (av1
i )T (bv2

i ) (2.1)

for all a, b ∈ A. The vector v is symmetric in the sense that
∑

i v1
i ⊗ v2

i =
∑

i v2
i ⊗ v1

i .
Consider a closed connected oriented surface M and fix a triangulation of M . We endow all 2-simplices of the

triangulation of M with distinguished orientation induced by the one in M . A flag of M is a pair (a 2-simplex of the
triangulation, an edge of this 2-simplex). Let {A f } f be a set of copies of A numerated by all flags f of M . Every
edge e of (the triangulation of) M is incident to two 2-simplices ∆,∆′ of M . Let ve ∈ A(∆,e) ⊗A(∆′,e) be a copy of
v ∈ A⊗A. The symmetry of v ensures that ve is well-defined. Set V = ⊗e ve ∈

⊗
f A f , where e runs over all edges

of M and f runs over all flags of M .
We say that a trilinear form U : A⊗A⊗A→ F is cyclically symmetric if

U (a ⊗ b ⊗ c) = U (c ⊗ a ⊗ b)

for all a, b, c ∈ A. Then U induces a homomorphism Ũ :
⊗

f A f → F as follows. Every 2-simplex ∆ of M has three
edges e1, e2, e3 numerated so that following along the boundary of ∆ in the direction determined by the distinguished
orientation of ∆, one meets consecutively e1, e2, e3. Since A(∆,ei ) = A for i = 1, 2, 3, the form U induces a trilinear
form

U∆ : A(∆,e1) ⊗A(∆,e2) ⊗A(∆,e3) → F.

This form is cyclically symmetric and therefore independent of the numeration of the edges of ∆. The tensor product
⊗∆ U∆ over all 2-simplices ∆ of M is a homomorphism

⊗
f A f → F denoted Ũ .

The form T (3)
: A⊗A⊗A→ F sending a ⊗b⊗c to T (abc) for all a, b, c ∈ A is cyclically symmetric. Consider

the induced homomorphism T̃ (3)
:
⊗

f A f → F and set IA(M) = T̃ (3)(V ) ∈ F . The key property of IA(M) is
the independence of the choice of triangulation of M . It is verified by checking the invariance of IA(M) under the
Pachner moves on the triangulations.

The direct product and the tensor product of two semisimple algebras are semisimple algebras. The invariant IA(M)

is additive with respect to direct products of algebras and multiplicative with respect to tensor products of algebras.

Lemma 2.1. We have IA(S2) = (dimF A) · 1F .

Proof. To compute IA(S2), we use the technique of skeletons (this technique will not be used elsewhere in this
paper). A skeleton of a surface M is a finite graph embedded in M whose complement in M consists of open 2-
disks. A triangulation of M gives rise to a skeleton of M whose vertices are the barycenters of the 2-simplices of
the triangulation and whose edges are dual to the edges of the triangulation. One can rewrite the definition of IA(M)

in terms of state sums on skeletons, see [5,12]. Namely, one assigns v =
∑

i v1
i ⊗ v2

i to each edge of the skeleton
meaning that the index i is assigned to the edge, the element v1

i of A is assigned to one half-edge and v2
i to the other

half-edge. For each vertex of the skeleton, one cyclically multiplies the elements of A assigned in this way to all
incident half-edges and evaluates T on this product. These values of T are multiplied over all vertices of the skeleton
and the results are summed over all the indices i sitting on the edges. The resulting sum is equal to IA(M).
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The 2-sphere S2 has a skeleton S1
⊂ S2 having one vertex and one edge. This gives IA(S2) =

∑
i T (v1

i v2
i ). To

compute the latter expression, we can assume that the vectors {v1
i }i in the expansion v =

∑
i v1

i ⊗ v2
i form a basis of

A. Formula (2.1) implies that

T (2)(a, b) = T (2)

(
a,
∑

i

T (bv2
i )v1

i

)
,

where T (2)(a, b) = T (ab) for a, b ∈ A. Since the bilinear form T (2) is non-degenerate, b =
∑

i T (bv2
i )v1

i for all
b ∈ A. For b = v1

j , this gives v1
j =

∑
i T (v1

j v
2
i )v1

i . Since {v1
i }i is a basis of A, we have T (v1

j v
2
i ) = 1 if i = j and

T (v1
j v

2
i ) = 0 if i 6= j .

The trace of any F-linear homomorphism f : A → A can be expanded via the trace homomorphism T : A → F
as follows. Represent f by a matrix ( fi, j ) over F in the basis {v1

i }i so that f (v1
i ) =

∑
j fi, jv

1
j for all i . Then

Tr( f ) =

∑
i

fi,i =

∑
i, j

fi, j T (v1
j v

2
i ) =

∑
i

T ( f (v1
i )v2

i ).

Pick a ∈ A and consider the homomorphism fa : A→ A sending any x ∈ A to ax . By the previous formula,

T (2)(a, 1A) = T (a) = Tr( fa) = T

(∑
i

av1
i v2

i

)
= T (2)

(
a,
∑

i

v1
i v2

i

)
,

where 1A is the unit of A. The non-degeneracy of T (2) implies that
∑

i v1
i v2

i = 1A. Thus,

IA(S2) = T

(∑
i

v1
i v2

i

)
= T (1A) = (dimF A) · 1F . �

Example. Let A = Matd(F) be the algebra of (d × d)-matrices over F with d ≥ 1. This algebra is semisimple if
and only if d is invertible in F and then IA(M) = dχ(M)

· 1F for any closed connected oriented surface M , see [11,
Theorem 4.2]. For d = 1, we obtain IF (M) = 1F for all M .

3. Invariants derived from twisted group algebras

Let G be a group and F[G] be the vector space over a field F with basis G. A normalized 2-cocycle c : G × G →

F∗ gives rise to a multiplication law · on F[G] by g1 · g2 = c(g1, g2)g1g2, where g1, g2 run over G and g1g2 ∈ G
is the product in G. The vector space F[G] with this multiplication is an associative algebra and the neutral element
1 ∈ G ⊂ F[G] is its unit. This algebra is called the twisted group algebra of G and denoted A(c). It is easy to check
that the isomorphism type of A(c) depends only on the cohomology class [c] ∈ H2(G; F∗).

From now on, G is a finite group whose order #G is invertible in F . The algebra A(c) is (#G)-dimensional and
the trace homomorphism T : A(c)

→ F defined in Section 2 sends 1 ∈ G to #G and sends all other basis vectors of
A(c) to zero. The associated bilinear form T (2)

: A(c)
⊗ A(c)

→ F sends a pair of basis vectors g1, g2 ∈ G to #G
if g2 = g−1

1 and to 0 otherwise. This form is non-degenerate and so the algebra A(c) is semisimple. The following
theorem shows that the state sum invariant of surfaces IA(c) is equivalent to the Dijkgraaf–Witten invariant derived
from [c] ∈ H2(G; F∗).

Theorem 3.1. For any normalized 2-cocycle c : G × G → F∗ on G and any closed connected oriented surface M,

Z[c](M) = (#G)−χ(M) IA(c)(M).

Proof. Fix a triangulation of M and let k0, k1, k2 be respectively the number of vertices, edges, and 2-simplices of
this triangulation. By an oriented edge of M we mean an edge of (the triangulation of) M endowed with an arbitrary
orientation. For an oriented edge e of M , the same edge with opposite orientation is denoted −e. A labeling of M is
a mapping ` from the set of oriented edges of M to G such that `(−e) = (`(e))−1 for all oriented edges e of M . A
labeling ` of M is admissible if `(e1)`(e2)`(e3) = 1 for any three consecutive oriented edges e1, e2, e3 forming the
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boundary of a 2-simplex of (the triangulation of) M . Denote the set of labelings of M by L(M) and denote its subset
formed by the admissible labelings by La(M).

Given a labeling ` ∈ L(M), we assign to any path p in M formed by consecutive oriented edges e1, . . . , eN the
product `(p) = `(e1)`(e2) · · · `(eN ) ∈ G. For admissible `, this product is a homotopy invariant of p: if two paths
p, p′ have the same endpoints and are homotopic (relative to the endpoints), then `(p) = `(p′).

Fix a base vertex m0 ∈ M and set π = π1(M, m0). For any ` ∈ La(M), applying the mapping p 7→ `(p) to the
loops in M based at m0, we obtain a group homomorphism π → G denoted Γ (`). The formula ` 7→ Γ (`) defines a
mapping Γ : La(M) → Hom(π, G).

We claim that the pre-image Γ−1(γ ) of any γ ∈ Hom(π, G) consists of (#G)k0−1 admissible labelings. To see
this, fix a spanning tree R ⊂ M formed by all k0 vertices and k0 − 1 edges of M ; here we use that M is connected.
For every vertex m of M , there is a (unique up to homotopy) path pm in R formed by oriented edges of R and leading
from m0 to m. Any oriented edge e of M not lying in R determines a loop pse e(pte )

−1, where se and te are the initial
and the terminal endpoints of e, respectively. The homotopy classes of such loops corresponding to all oriented edges
e of M not lying in R generate the fundamental group π . Therefore the pre-image of γ ∈ Hom(π, G) consists of the
labelings ` ∈ La(M) such that `(pse e(pte )

−1) = γ (pse e(pte )
−1) for all e as above. This equality may be rewritten as

`(e) = (`(pse ))
−1γ (pse e(pte )

−1)`(pte ). (3.1)

Therefore to specify ` ∈ Γ−1(γ ), we can assign arbitrary labels to the k0 − 1 edges of R oriented away from m0, the
inverse labels to the same edges oriented towards m0, and the labels determined from Eq. (3.1) to the oriented edges
of M not lying in R. The resulting labeling is necessarily admissible. Hence, # Γ−1(γ ) = (#G)k0−1.

Formula (1.1) and the results above imply that

Z[c](M) = (#G)−k0
∑

`∈La(M)

〈( fΓ (`))
∗([c]), [M]〉 ∈ F,

where fΓ (`) is a mapping from the pair (M, m0) to the pair (an Eilenberg–MacLane space X of type K (G, 1), a base
point x ∈ X ) such that the induced homomorphism of fundamental groups is equal to Γ (`) : π → G. Choosing in the
role of X the canonical realization of the Eilenberg–MacLane space K (G, 1) associated with the standard resolution
of the Z[G]-module Z (see, for instance, [1]), we can compute 〈( fΓ (`))

∗([c]), [M]〉 as follows. Fix a total order < on
the set of all vertices of M . A 2-simplex ∆ of M has three vertices A, B, C with A < B < C . Set ε∆ = +1 if the
distinguished orientation of ∆ (induced by the one on M) induces the direction from A to B on the edge AB ⊂ ∂∆
and set ε∆ = −1 otherwise. Let `∆

1 = `(AB) and `∆
2 = `(BC) be the labels of the edges AB, BC oriented from A

to B and from B to C , respectively. Then

〈( fΓ (`))
∗([c]), [M]〉 =

∏
∆

c(`∆
1 , `∆

2 )ε∆ ∈ F∗,

where ∆ runs over all 2-simplices of M . Hence,

Z[c](M) = (#G)−k0
∑

`∈La(M)

∏
∆

c(`∆
1 , `∆

2 )ε∆ . (3.2)

We now compute IA(M) ∈ F for A = A(c). First, with each labeling ` ∈ L(M) we associate an element 〈c, `〉 of
F∗. Observe that c(g, g−1) = c(g−1, g) for all g ∈ G (this is obtained from Eq. (1.2) by the substitution g1 = g3 = g
and g2 = g−1). Therefore for any oriented edge e of M , the expression c(`(e), `(−e)) = c(`(−e), `(e)) ∈ F∗ does
not depend on the orientation of e and may be associated with the underlying unoriented edge. Set

〈c, `〉 =

∏
e

c(`(e), `(−e)) ∈ F∗,

where e runs over all non-oriented edges of M .
Let as above {A f } f be a set of copies ofA numerated by all flags f of M . With a labeling ` ∈ L(M) we associate a

vector V (`) ∈ ⊗ f A f as follows. For a flag f formed by a 2-simplex ∆ and its edge e, the distinguished orientation of
∆ induces an orientation of e. Let `( f ) ∈ G ⊂ A = A f be the value of ` on this oriented edge. Set V (`) = ⊗ f `( f ).
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Recall the homomorphisms T : A → F , T (3)
: A ⊗ A ⊗ A → F , and the vector v ∈ A ⊗ A introduced in

Section 2. It is easy to compute that

v = (#G)−1
∑
g∈G

(c(g, g−1))−1g ⊗ g−1.

Therefore the vector V = ⊗e ve ∈ ⊗ f A f is computed by

V = (#G)−k1
∑

`∈L(M)

〈c, `〉−1V (`).

For any g1, g2, g3 ∈ G, we have T (3)(g1 ⊗ g2 ⊗ g3) = 0 if g1g2g3 6= 1 and

T (3)(g1 ⊗ g2 ⊗ g3) = T (g1g2g3) = #Gc(g1, g2)c(g1g2, g3)

if g1g2g3 = 1. Consider the homomorphism U = (#G)−1T (3)
: A ⊗ A ⊗ A → F sending g1 ⊗ g2 ⊗ g3 to 0 if

g1g2g3 6= 1 and to c(g1, g2)c(g1g2, g3) if g1g2g3 = 1. The cyclic symmetry of T (3) implies that U is cyclically
symmetric. Then

IA(M) = T̃ (3)(V ) = (#G)k2Ũ (V ) = (#G)k2−k1
∑

`∈L(M)

〈c, `〉−1Ũ (V (`)).

It is clear that k2 − k1 = χ(M) − k0 and Ũ (V (`)) = 0 for non-admissible `. Hence

IA(M) = (#G)χ(M)−k0
∑

`∈La(M)

〈c, `〉−1Ũ (V (`)). (3.3)

To compute Ũ (V (`)) for ` ∈ La(M), we use the total order < on the set of vertices of M . With a 2-simplex
∆ = ABC of M with A < B < C we associated above a sign ε∆ = ±1 and two labels g1 = `∆

1 = `(AB) ∈ G
and g2 = `∆

2 = `(BC) ∈ G. Set also g3 = `∆
3 = `(C A) ∈ G. The admissibility of ` implies that g1g2g3 = 1. The

2-simplex ∆ gives rise to the flags (∆, AB), (∆, BC), and (∆, C A). These flags contribute to V (`) the tensor factor

(g1)
ε∆ ⊗ (g2)

ε∆ ⊗ (g3)
ε∆ ∈ A(∆,AB) ⊗A(∆,BC) ⊗A(∆,C A).

Recall the trilinear form U∆ : A(∆,AB) ⊗A(∆,BC) ⊗A(∆,C A) → F introduced in Section 2. If ε∆ = +1, then

U∆((g1)
ε∆ ⊗ (g2)

ε∆ ⊗ (g3)
ε∆) = U (g1 ⊗ g2 ⊗ g3) = c(g1, g2)c(g1g2, g3)

= c(g1, g2)c(g−1
3 , g3) = c(g1, g2)c(g3, g−1

3 ).

If ε∆ = −1, then

U∆((g1)
ε∆ ⊗ (g2)

ε∆ ⊗ (g3)
ε∆) = U∆(g−1

1 ⊗ g−1
2 ⊗ g−1

3 ) = U (g−1
3 ⊗ g−1

2 ⊗ g−1
1 )

= c(g−1
3 , g−1

2 )c(g−1
3 g−1

2 , g−1
1 ) = c(g1g2, g−1

2 )c(g1, g−1
1 )

= (c(g1, g2))
−1c(g1, g−1

1 )c(g2, g−1
2 ).

The last equality follows from (1.2), where we set g3 = g−1
2 . In both cases

U∆((g1)
ε∆ ⊗ (g2)

ε∆ ⊗ (g3)
ε∆) = c(g1, g2)

ε∆u∆,

where u∆ = c(g3, g−1
3 ) if ε∆ = +1 and u∆ = c(g1, g−1

1 )c(g2, g−1
2 ) if ε∆ = −1. We conclude that

Ũ (V (`)) =

∏
∆

c(`∆
1 , `∆

2 )ε∆u∆, (3.4)

where ∆ runs over all 2-simplices of M .
We claim that

∏
∆ u∆ = 〈c, `〉. Note that the product

∏
∆ u∆ expands as a product of the expressions

c(`(e), `(−e)) associated with edges e of M . We show that every edge e = AB of M with A < B contributes
exactly one such expression. Set g = `(AB) ∈ G. The edge AB is incident to two 2-simplices ∆ = ABC and
∆′

= ABC ′ of M whose distinguished orientations induce on AB = ∂∆ ∩ ∂∆′ the directions from B to A and from
A to B, respectively. If B < C , then ε∆ = −1, g = `∆

1 , and AB contributes the factor c(g, g−1) to u∆. If C < A,
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then ε∆ = −1, g = `∆
2 , and AB contributes the factor c(g, g−1) to u∆. Finally, if A < C < B, then ε∆ = +1,

g = `∆
3 , and u∆ = c(g, g−1). A similar computation shows that AB contributes no factors to u∆′ . Therefore∏
∆

u∆ =

∏
e

c(`(e), `(−e)) = 〈c, `〉.

Substituting this in (3.4), we obtain

Ũ (V (`)) =

∏
∆

c(`∆
1 , `∆

2 )ε∆ × 〈c, `〉.

Formula (3.3) yields

IA(M) = (#G)χ(M)−k0
∑

`∈La(M)

∏
∆

c(`∆
1 , `∆

2 )ε∆ .

Comparing with (3.2), we obtain the claim of the theorem. �

Since the algebra A(c) is finite-dimensional and semisimple, the isomorphism classes of simple A(c)-modules form
a finite non-empty set Λ (an A(c)-module is simple if its only A(c)-submodules are itself and zero). Let {Vλ}λ∈Λ be
representatives of these isomorphism classes. Then

A(c) ∼=

⊕
λ∈Λ

Matdλ(Dλ) =

⊕
λ∈Λ

Dλ ⊗F Matdλ(F), (3.5)

where Dλ = EndA(c)(Vλ) is a division F-algebra (i.e., an F-algebra in which all non-zero elements are invertible), dλ

is the dimension of Vλ as a Dλ-module, and Matd(D) with d ≥ 1 is the algebra of (d × d)-matrices over the ring D.
The integer dλ is invertible in F for all λ, because the algebra Matdλ(Dλ) is a direct summand of A(c) and is therefore
semisimple. Theorem 3.1 implies that (under the conditions of this theorem)

Z[c](M) = (#G)−χ(M)
∑
λ∈Λ

IDλ(M)dχ(M)
λ . (3.6)

We can check (3.6) directly for M = S2. Indeed, Z[c](S2) = (#G)−1
· 1F and by Lemma 2.1, IDλ(S2) =

(dimF Dλ) · 1F for all λ ∈ Λ. Therefore (3.6) for M = S2 follows from the equality

#G =

∑
λ∈Λ

(dimF Dλ)d2
λ (3.7)

which is a consequence of (3.5).
Formulas (3.6) and (3.7) simplify in the case where F is algebraically closed. Then Dλ = F for all λ ∈ Λ and we

obtain

Z[c](M) = (#G)−χ(M)
∑
λ∈Λ

dχ(M)
λ · 1F (3.8)

and

#G =

∑
λ∈Λ

d2
λ . (3.9)

In particular, Z[c](S1
× S1) = #Λ · 1F . The number #Λ, that is the number of isomorphism classes of simple A(c)-

modules, can be computed in terms of the so-called c-regular classes of G, see [8, pp. 107–118]. An element g ∈ G
is c-regular if c(g, h) = c(h, g) for all h ∈ G such that gh = hg. The set of c-regular elements of G depends only on
the cohomology class [c] ∈ H2(G; F∗) and is invariant under conjugation in G. Since F is algebraically closed (and
as always in this paper, #G is invertible in F), #Λ = r(G; c), where r(G; c) is the number of conjugacy classes of
c-regular elements of G, see [8, p. 117].

Proof of Theorem 1.2. Any c-representation of G in the sense of Section 1 extends by linearity to an action of A(c)

on the corresponding vector space. This gives a bijective correspondence between c-representations of G and A(c)-
modules of finite dimension over F . This correspondence transforms equivalent representations to isomorphic A(c)-
modules and irreducible representations to simple modules. This allows us to rewrite all the statements of this section
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in terms of the c-representations of G. In particular, the set Ĝc of equivalence classes of irreducible c-representations
of G is finite and non-empty. Now, Formula (3.8) directly implies (1.3). Note also that Formula (3.9) implies (1.4).

Remark 3.2. Formula (1.5) generalizes to surfaces with boundary as follows (see [10,6]). Let π be the fundamental
group of a compact connected oriented surface M whose boundary consists of k ≥ 1 circles and let x1, . . . , xk be the
conjugacy classes in π represented by the components of ∂ M . For any g1, . . . , gk ∈ G, the number of homomorphisms
ϕ : π → G such that ϕ(xi ) is conjugate to gi in G for all i = 1, . . . , k is equal to

#G
∑
ρ∈Ĝ

(
#G

dim ρ

)−χ(M) k∏
i=1

χρ(gi )(mod p),

where χρ : G → F is the characteristic of ρ and p is the characteristic of F . It would be interesting to give a similar
generalization of (1.3).

4. The non-orientable case

A non-oriented version of the Dijkgraaf–Witten invariant in dimension n ≥ 1 can be defined as follows. Let G be a
finite group and α ∈ Hn(G; Z/2Z). For a closed connected n-dimensional topological manifold M with fundamental
group π , set

Zα(M) = (#G)−1
∑

γ∈Hom(π,G)

(−1)〈( fγ )∗(α),[M]〉
∈ (#G)−1 Z,

where fγ : M → K (G, 1) is as in Section 1 and 〈( fγ )∗(α), [M]〉 ∈ Z/2Z is the value of ( fγ )∗(α) ∈ Hn(M; Z/2Z)

on the fundamental class [M] ∈ Hn(M; Z/2Z). For orientable M , this is a special case of the definition given in
Section 1. We therefore restrict ourselves to non-orientable M . From now on, n = 2.

We formulate a Verlinde-type formula for Zα(M). Fix a normalized 2-cocycle c on G with values in the
cyclic group of order two {±1}. Fix a field F such that #G is invertible in F . An irreducible c-representation
ρ : G → GL(W ), where W is a finite-dimensional vector space over F , is self-dual if there is a non-degenerate
bilinear form 〈, 〉 : W × W → F such that 〈ρ(g)(u), ρ(g)(v)〉 = 〈u, v〉 for all g ∈ G and u, v ∈ W . The irreducibility
of ρ easily implies that the form 〈, 〉 has to be either symmetric or skew-symmetric. Set ερ = 1 ∈ F in the former case
and ερ = −1 ∈ F in the latter case. For any non-self-dual irreducible c-representation ρ, set ερ = 0 ∈ F . The formula
ρ 7→ ερ yields a well-defined function Ĝc → {−1, 0, 1} ⊂ F . This function plays the role of the Frobenius–Schur
indicator in the theory of representations over C.

Composing c : G × G → {±1} with the isomorphism {±1} ≈ Z/2Z, we obtain a (Z/2Z)-valued 2-cocycle on G.
Its cohomology class in H2(G; Z/2Z) is denoted [c].

Theorem 4.1. If F is an algebraically closed field, then for any normalized 2-cocycle c : G × G → {±1} and any
closed connected non-orientable surface M,

Z[c](M) = (#G)−χ(M)
∑
ρ∈Ĝc

(ερ dim ρ)χ(M). (4.1)

Note that χ(M) ≤ 0 for all closed connected non-orientable surfaces M distinct from the real projective plane P2.

Corollary 4.2. Let F be a field of characteristic p ≥ 0 and α ∈ H2(G; Z/2Z). If p = 0, then Zα(M) ∈ F is a
non-negative integer for all closed connected non-orientable surfaces M 6= P2. If p > 0, then Zα(M) ∈ Z/pZ ⊂ F
for all closed connected non-orientable surfaces M.

The proof of Theorem 4.1 uses state sum invariants of non-oriented surfaces introduced by Karimipour and
Mostafazadeh [7], see also [11]. These invariants are derived from the so-called ∗-algebras. A ∗-algebra over a field
F (not necessarily algebraically closed) is a finite-dimensional algebraA over F endowed with an F-linear involution
A → A, a 7→ a∗ such that (ab)∗ = b∗a∗ for all a, b ∈ A and T (a∗) = T (a) for all a ∈ A, where T : A → F is the
trace homomorphism defined in Section 2. Note that for any a, b ∈ A,

T (a∗b) = T ((a∗b)∗) = T (b∗a) = T (ab∗).
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A ∗-algebraA is semisimple if the bilinear form T (2)
: A⊗A→ F , defined by a⊗b 7→ T (ab), is non-degenerate.

Consider the vector v =
∑

i v1
i ⊗ v2

i ∈ A⊗A satisfying (2.1) and note that

(idA⊗∗)(v) = (∗ ⊗ id)(v). (4.2)

Indeed, for any a, b ∈ A,∑
i

T (a(v1
i )∗)T (bv2

i ) =

∑
i

T (a∗v1
i )T (bv2

i ) = T (a∗b) = T (ab∗)

=

∑
i

T (av1
i )T (b∗v2

i ) =

∑
i

T (av1
i )T (b(v2

i )∗).

Now, the non-degeneracy of T (2) implies that
∑

i (v
1
i )∗ ⊗ v2

i =
∑

i v1
i ⊗ (v2

i )∗.
A semisimple ∗-algebra (A, ∗) over F gives rise to an invariant of a closed connected (non-oriented) surface M

as follows (cf. [7,11]). Fix a triangulation of M and an arbitrary orientation on its 2-simplices. Then proceed as in
Section 2 with one change: the vector ve assigned to an edge e is v if the orientations of two 2-simplices adjacent to
e induce opposite orientations on e and is (idA⊗∗)(v) = (∗ ⊗ idA)(v) otherwise. Then I(A,∗)(M) = T̃ (3)(V ) ∈ F
is a topological invariant of M , where V = ⊗e ve. That I(A,∗)(M) is preserved when the orientation on a 2-simplex
is reversed follows from the formula T (abc) = T ((abc)∗) = T (c∗b∗a∗) for a, b, c ∈ A. For orientable M , we have
I(A,∗)(M) = IA(M), where IA(M) is the invariant of Section 2 computed for an arbitrary orientation of M .

The following example was communicated to the author by Snyder, cf. [11, Theorem 4.2]. Let A = Matd(F)

with d ≥ 1 invertible in F and let ∗ be the involution in A defined by a∗
= Q−1aTr Q, where a ∈ A and

Q ∈ Matd(F) is an invertible matrix such that QTr
= εQ for ε = ±1. Then the pair (A, ∗) is a semisimple ∗-

algebra and I(A,∗)(M) = (εd)χ(M)
· 1F .

Let again c : G × G → {±1} be a normalized 2-cocycle. We define a multiplication · on the vector space F[G] by
g1 · g2 = c(g1, g2)g1g2 for any g1, g2 ∈ G. This turns F[G] into an associative unital algebra A(c) with involution
∗ defined by g∗

= c(g, g−1)g−1 for g ∈ G. The pair (A(c), ∗) is a semisimple ∗-algebra. The only non-obvious
condition is the equality (ab)∗ = b∗a∗ for a, b ∈ A(c). It suffices to check this equality for a, b ∈ G. It is equivalent
then to the five-term identity

c(ab, (ab)−1) = c(a, a−1)c(b, b−1)c(a, b)c(b−1, a−1).

To check this identity, we substitute g1 = a, g2 = b, g3 = b−1 in (1.2) and obtain c(ab, b−1) = c(a, b)c(b, b−1).
Then set g1 = ab, g2 = b−1, g3 = a−1 in (1.2) and substitute c(ab, b−1) = c(a, b)c(b, b−1) in the resulting formula.
This yields a formula equivalent to the five-term identity.

Theorem 4.3. For any closed connected surface M,

Z[c](M) = (#G)−χ(M) I(A(c),∗)(M).

Proof. The proof is analogous to the proof of Theorem 3.1 and we only indicate the main changes. One begins by
fixing a triangulation of M and a total order on the set of the vertices. As in the proof of Theorem 3.1, we define the sets
L(M) and La(M) of labelings and admissible labelings of M . Each 2-simplex ∆ = ABC of M with A < B < C is
provided with distinguished orientation which induces the direction from A to B on the edge AB. For any ` ∈ L(M),
set `∆

1 = `(AB), `∆
2 = `(BC), and `∆

3 = `(C A). Then

Z[c](M) = (#G)−k0
∑

`∈La(M)

∏
∆

c(`∆
1 , `∆

2 ). (4.3)

Let A = A(c). The vector v ∈ A⊗A is computed by

v = (#G)−1
∑
g∈G

c(g, g−1)g ⊗ g−1

and

(idA⊗∗)(v) = (∗ ⊗ idA)(v) = (#G)−1
∑
g∈G

g ⊗ g.
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Let {A f } f be a set of copies of A numerated by all flags f of M . With a labeling ` of M we associate a vector
V (`) ∈ ⊗ f A f as in the proof of Theorem 3.1. Then

V = (#G)−k1
∑

`∈L(M)

〈〈c, `〉〉V (`),

for

〈〈c, `〉〉 =

∏
e

c(`(e), `(−e)) ∈ F∗,

where e runs over all edges of M such that the distinguished orientations of the 2-simplices adjacent to e induce
opposite orientations on e.

Set U = (#G)−1T (3)
: A⊗A⊗A→ F and observe that

I(A(c),∗) = T̃ (3)(V ) = (#G)k2Ũ (V ) = (#G)k2−k1
∑

`∈L(M)

〈〈c, `〉〉Ũ (V (`))

= (#G)χ(M)−k0
∑

`∈La(M)

〈〈c, `〉〉Ũ (V (`)).

Here

Ũ (V (`)) =

∏
∆

c(`∆
1 , `∆

2 )u∆,

where u∆ = c(`∆
3 , (`∆

3 )−1). If an edge e of M is adjacent to the 2-simplices ∆,∆′, then e contributes
c(`(e), `(−e)) = ±1 to the product u∆u∆′ if the distinguished orientations of ∆,∆′ induce opposite orientations
on e. Otherwise e contributes +1 to u∆u∆′ . Therefore

∏
∆ u∆ = 〈〈c, `〉〉. The rest of the proof is straightforward.

Proof of Theorem 4.1. To deduce Theorem 4.1 from Theorem 4.3, we split A(c) as a direct product of matrix algebras.
The involution ∗ on A(c) induces a permutation σ on the set of these algebras. The fixed points of σ bijectively
correspond to the self-dual irreducible c-representations of G. The free orbits of σ give rise to ∗-subalgebras of A(c)

of type B = Matd(F)×Matd(F), where d is invertible in F and the involution ∗ on B acts by (P1, P2) 7→ (PTr
2 , PTr

1 )

for P1, P2 ∈ Matd(F). A computation similar to the one in [11, Theorem 4.2] shows that I(B,∗)(M) = 0. The rest of
the argument goes as in the oriented case. �

Remark 4.4. For c = 1, Formula (4.1) may be rewritten as

# Hom(π1(M), G) = #G
∑
ρ∈Ĝ

(
ερ #G
dim ρ

)−χ(M)

(mod p),

where p ≥ 0 is the characteristic of F and Ĝ is the set of irreducible linear representations of G over F considered
up to linear equivalence.

Remark 4.5. Consider in more detail the case M = P2. The group π = π1(P2) is a cyclic group of order 2 so
that the homomorphisms π → G are numerated by elements of the set S = {g ∈ G |g2

= 1}. Any g ∈ S gives
rise to a (non-homogeneous) generator [g|g] of the normalized bar-complex of G. This generator is a cycle modulo
2 since ∂[g|g] = 2[g] − [g2

] = 0 (mod 2). For α ∈ H2(G; Z/2Z) and any mapping f : P2
→ K (G, 1), we have

〈 f ∗(α), [P2
]〉 = α([g|g]), where g ∈ G is the value of the induced homomorphism f# : π → G on the non-trivial

element of π and α([g|g]) is the evaluation of α on the 2-cycle [g|g]. Therefore

Zα(P2) = (#G)−1
∑
g∈S

(−1)α([g|g]).

If α is represented by a normalized 2-cocycle c : G × G → {±1} ≈ Z/2Z, then

(−1)α([g|g])
= c(g, g) and Z[c](P2) = (#G)−1

∑
g∈S

c(g, g).
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Formula (4.1) can now be rewritten as∑
ρ∈Ĝc

ερ dim ρ =

∑
g∈S

c(g, g) (mod p),

where p ≥ 0 is the characteristic of F . For c = 1, this gives∑
ρ∈Ĝ

ερ dim ρ = #S (mod p).
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