Dijkgraaf-Witten invariants of surfaces and projective representations of groups

Vladimir Turaev*
IRMA, Université Louis Pasteur - C.N.R.S., 7 rue René Descartes, F-67084 Strasbourg, France Department of Mathematics, Indiana University, Rawles Hall, 831 East 3rd Street, Bloomington, IN 47405, USA

Received 2 July 2007; accepted 11 August 2007
Available online 31 August 2007

Abstract

We compute the Dijkgraaf-Witten invariants of surfaces in terms of projective representations of groups. As an application we prove that the complex Dijkgraaf-Witten invariants of surfaces of positive genus are positive integers.

(C) 2007 Elsevier B.V. All rights reserved.

MSC: 57R56; 81T45; 20C25
Keywords: Surfaces; Dijkgraaf-Witten invariants; Projective representations

1. Introduction

Dijkgraaf and Witten [2] derived homotopy invariants of 3-manifolds from 3-dimensional cohomology classes of finite groups. Their construction provides examples of path integrals reduced to finite sums. It extends to arbitrary dimensions as follows. Fix a field F and let $F^{*}=F-\{0\}$ be the multiplicative group of non-zero elements of F. Fix a finite group G whose order $\# G$ is invertible in F. Pick an Eilenberg-MacLane CW-space X of type $K(G, 1)$ with base point $x \in X$. Consider a closed connected oriented topological manifold M of dimension $n \geq 1$ with base point $m_{0} \in M$ and set $\pi=\pi_{1}\left(M, m_{0}\right)$. Observe that for any group homomorphism $\gamma: \pi \rightarrow G$, there is a mapping $f_{\gamma}:\left(M, m_{0}\right) \rightarrow(X, x)$ (unique up to homotopy) such that the induced homomorphism $\left(f_{\gamma}\right)_{\#}: \pi \rightarrow \pi_{1}(X, x)=G$ is equal to γ. The Dijkgraaf-Witten invariant $Z_{\alpha}(M) \in F$ determined by a cohomology class $\alpha \in H^{n}\left(G ; F^{*}\right)=H^{n}\left(X ; F^{*}\right)$ is defined by

$$
\begin{equation*}
Z_{\alpha}(M)=(\# G)^{-1} \sum_{\gamma \in \operatorname{Hom}(\pi, G)}\left\langle\left(f_{\gamma}\right)^{*}(\alpha),[M]\right\rangle . \tag{1.1}
\end{equation*}
$$

$\operatorname{Here} \operatorname{Hom}(\pi, G)$ is the (finite) set of all group homomorphisms $\pi \rightarrow G$ and

$$
\left\langle\left(f_{\gamma}\right)^{*}(\alpha),[M]\right\rangle \in F^{*}
$$

[^0]is the value of $\left(f_{\gamma}\right)^{*}(\alpha) \in H^{n}\left(M ; F^{*}\right)$ on the fundamental class $[M] \in H_{n}(M ; \mathbb{Z})$. The addition on the right-hand side of (1.1) is the addition in F. One may say that $Z_{\alpha}(M)$ counts the homomorphisms $\gamma: \pi \rightarrow G$ with weights $(\# G)^{-1}\left\langle\left(f_{\gamma}\right)^{*}(\alpha),[M]\right\rangle$. In particular, for $\gamma=1$, we have $\left\langle\left(f_{\gamma}\right)^{*}(\alpha),[M]\right\rangle=1_{F}$, where $1_{F} \in F$ is the unit of F. Thus, $\gamma=1$ contributes the summand $(\# G)^{-1} \cdot 1_{F}$ to $Z_{\alpha}(M)$.

It is clear from the definitions that $Z_{\alpha}(M)$ depends neither on the choice of the base point $m_{0} \in M$ nor on the choice of the Eilenberg-MacLane space X. Moreover, $Z_{\alpha}(M)$ depends only on α and the homotopy type of M. For example, if M is simply connected, that is if $\pi=\{1\}$, then $Z_{\alpha}(M)=(\# G)^{-1} \cdot 1_{F}$ for all α. If $G=\{1\}$, then $Z_{\alpha}(M)=1_{F}$ for all M.

In this paper we study the case $n=2$. We begin with elementary algebraic preliminaries. If $p \geq 0$ is the characteristic of the field F, then the formula $m \mapsto m \cdot 1_{F}$ for $m \in \mathbb{Z} / p \mathbb{Z}$, defines an isomorphism of $\overline{\mathbb{Z}} / p \mathbb{Z}$ onto the ring $(\mathbb{Z} / p \mathbb{Z}) \cdot 1_{F} \subset F$ additively generated by 1_{F}. We identify $\mathbb{Z} / p \mathbb{Z}$ with $(\mathbb{Z} / p \mathbb{Z}) \cdot 1_{F}$ via this isomorphism. In particular, if $p=0$, then $\mathbb{Z}=\mathbb{Z} \cdot 1_{F} \subset F$.

Theorem 1.1. Let F be a field of characteristic $p \geq 0$ and $\alpha \in H^{2}\left(G ; F^{*}\right)$. If $p=0$, then $Z_{\alpha}(M) \in F$ is a positive integer for all closed connected oriented surfaces $M \neq S^{2}$. If $p>0$, then $Z_{\alpha}(M) \in \mathbb{Z} / p \mathbb{Z} \subset F$ for all closed connected oriented surfaces M.

The case of the sphere $M=S^{2}$ stays somewhat apart. Since S^{2} is simply connected, $Z_{\alpha}\left(S^{2}\right)=(\# G)^{-1} \cdot 1_{F}$ for all α. If $p>0$, then by the assumptions on G, the number $\# G$ is invertible in $\mathbb{Z} / p \mathbb{Z}$ and $Z_{\alpha}\left(S^{2}\right) \in \mathbb{Z} / p \mathbb{Z} \subset F$. If $p=0$, then $Z_{\alpha}\left(S^{2}\right)$ is not an integer except for $G=\{1\}$.

Applying Theorem 1.1 to $F=\mathbb{C}$, we obtain that the complex number $Z_{\alpha}(M)$ is a positive integer for all surfaces $M \neq S^{2}$ and all $\alpha \in H^{2}\left(G ; \mathbb{C}^{*}\right)$.

A curious feature of Theorem 1.1 is that its statement uses only classical notions of algebraic topology while its proof, given below, is based on ideas and techniques from quantum topology. I do not know how to prove this theorem using only the standard tools of algebraic topology.

Results similar to Theorem 1.1 are familiar in the study of 3-dimensional topological quantum field theories (TQFTs), where partition functions on surfaces compute dimensions of certain vector spaces associated with the surfaces. It would be interesting to give an interpretation of $Z_{\alpha}(M)$ as the dimension of a vector space naturally associated with M.

The proof of Theorem 1.1 is based on a Verlinde-type formula for $Z_{\alpha}(M)$ stated in terms of projective representations of G. Let, as above, F be a field (not necessarily algebraically closed). Fix a 2-cocycle $c: G \times G \rightarrow F^{*}$ so that for all $g_{1}, g_{2}, g_{3} \in G$,

$$
\begin{equation*}
c\left(g_{1}, g_{2}\right) c\left(g_{1} g_{2}, g_{3}\right)=c\left(g_{1}, g_{2} g_{3}\right) c\left(g_{2}, g_{3}\right) \tag{1.2}
\end{equation*}
$$

We will always assume that c is normalized in the sense that $c(g, 1)=c(1, g)=1$ for all $g \in G$. (Any cohomology class in $H^{2}\left(G ; F^{*}\right)$ can be represented by a normalized cocycle.) A mapping $\rho: G \rightarrow G L(W)$, where W is a finitedimensional vector space over F, is called a c-representation of G if $\rho(1)=\mathrm{id}_{W}$ and $\rho\left(g_{1} g_{2}\right)=c\left(g_{1}, g_{2}\right) \rho\left(g_{1}\right) \rho\left(g_{2}\right)$ for any $g_{1}, g_{2} \in G$. The dimension of W over F is denoted $\operatorname{dim}(\rho)$. Two c-representations $\rho: G \rightarrow G L(W)$ and $\rho^{\prime}: G \rightarrow G L\left(W^{\prime}\right)$ are equivalent if there is an isomorphism of vector spaces $j: W \rightarrow W^{\prime}$ such that $\rho^{\prime}(g)=j \rho(g) j^{-1}$ for all $g \in G$. It is clear that $\operatorname{dim}(\rho)$ depends only on the equivalence class of ρ.

A c-representation $\rho: G \rightarrow G L(W)$ is irreducible if 0 and W are the only vector subspaces of W invariant under $\rho(G)$. It is obvious that a c-representation equivalent to an irreducible one is itself irreducible. The set of equivalence classes of irreducible c-representations of G is denoted \widehat{G}_{c}. We explain below that \widehat{G}_{c} is a finite non-empty set.

The 2-cocycle c represents a cohomology class $[c] \in H^{2}\left(G ; F^{*}\right)$. The theory of c-representations of G depends only on [c]. Indeed, any two normalized 2-cocycles $c, c^{\prime}: G \times G \rightarrow F^{*}$ representing the same cohomology class satisfy

$$
c\left(g_{1}, g_{2}\right)=c^{\prime}\left(g_{1}, g_{2}\right) b\left(g_{1}\right) b\left(g_{2}\right)\left(b\left(g_{1} g_{2}\right)\right)^{-1}
$$

for all $g_{1}, g_{2} \in G$ and a mapping $b: G \rightarrow F^{*}$ such that $b(1)=1$. A c-representation ρ of G gives rise to a c^{\prime} representation ρ^{\prime} of G by $\rho^{\prime}(g)=b(g) \rho(g)$ for $g \in G$. This establishes a bijection between c-representations and c^{\prime}-representations and induces a bijection $\widehat{G}_{c} \approx \widehat{G}_{c^{\prime}}$.

Theorem 1.2. Let F be an algebraically closed field such that $\# G$ is invertible in F. For any normalized 2 -cocycle $c: G \times G \rightarrow F^{*}$ and any closed connected oriented surface M,

$$
\begin{equation*}
Z_{[c]}(M)=(\# G)^{-\chi(M)} \sum_{\rho \in \widehat{\widehat{G}}_{c}}(\operatorname{dim} \rho)^{\chi(M)} \cdot 1_{F}, \tag{1.3}
\end{equation*}
$$

where $\chi(M)$ is the Euler characteristic of M.
It is known that the integer $\operatorname{dim} \rho$ divides $\# G$ in \mathbb{Z} for any $\rho \in \widehat{G}_{c}$, see, for instance, [8, p. 296]. Therefore $\operatorname{dim} \rho$ is invertible in F so that the expression on the right-hand side of (1.3) is well-defined for all values of $\chi(M)$.

For $M=S^{1} \times S^{1}$, Formula (1.3) gives $Z_{[c]}\left(S^{1} \times S^{1}\right)=\# \widehat{G}_{c}(\bmod p)$, where $p \geq 0$ is the characteristic of F. For $M=S^{2}$, Formula (1.3) can be rewritten as $\sum_{\rho \in \widehat{G}_{c}}(\operatorname{dim} \rho)^{2}=\# G(\bmod p)$. If $p=0$, this gives

$$
\begin{equation*}
\sum_{\rho \in \widehat{G}_{c}}(\operatorname{dim} \rho)^{2}=\# G . \tag{1.4}
\end{equation*}
$$

We show below that (1.4) holds also when $p>0$.
Denote M_{k} a closed connected oriented surface of genus $k \geq 0$. If $k \geq 1$, then $-\chi(M)=2 k-2 \geq 0$ and

$$
Z_{[c]}\left(M_{k}\right)=\sum_{\rho \in \widehat{G}_{c}}\left(\frac{\# G}{\operatorname{dim} \rho}\right)^{2 k-2} \cdot 1_{F}
$$

is a non-empty sum of positive integers times 1_{F}. This implies Theorem 1.1 for algebraically closed F. The general case of Theorem 1.1 follows by taking the algebraic closure of the ground field (this does not change the Dijkgraaf-Witten invariant).

For the trivial cocycle $c=1$, we have $[c]=0$ and $\widehat{G}=\widehat{G}_{c}$ is the set of all irreducible (finite-dimensional) linear representations of G over F considered up to linear equivalence. Clearly, $\left\langle\left(f_{\gamma}\right)^{*}([c]),[M]\right\rangle=1 \in F^{*}$ for any closed connected oriented surface M and any homomorphism γ from $\pi=\pi_{1}(M)$ to G. Thus, $Z_{0}(M)=$ $(\# G)^{-1} \# \operatorname{Hom}(\pi, G)$. Formula (1.3) gives

$$
\begin{equation*}
\# \operatorname{Hom}(\pi, G)=\# G \sum_{\rho \in \widehat{G}}\left(\frac{\# G}{\operatorname{dim} \rho}\right)^{-\chi(M)}(\bmod p), \tag{1.5}
\end{equation*}
$$

where $p \geq 0$ is the characteristic of F. For $M=S^{1} \times S^{1}$ and $F=\mathbb{C}$, Formula (1.5) is due to Frobenius. For surfaces of higher genus, this formula was first pointed out by Mednykh [9], see [6] for a direct algebraic proof and [4, Section 5] for a proof based on topological field theory.

One can deduce further properties of $Z_{[c]}(M)$ from Theorem 1.2. Assume that F is an algebraically closed field of characteristic 0 and k is a positive integer. By Eq. (1.4), we have $(\# G)^{1 / 2} \geq \operatorname{dim} \rho \geq 1$ for all $\rho \in \widehat{G}_{c}$ and therefore

$$
\# \widehat{G}_{c}(\# G)^{2 k-2} \geq Z_{[c]}\left(M_{k}\right) \geq \# \widehat{G}_{c}(\# G)^{k-1} .
$$

If $[c] \neq 0$, then $\operatorname{dim} \rho \geq 2$ for all $\rho \in \widehat{G}_{c}$ and we obtain a more precise estimate from above $\# \widehat{G}_{c}(\# G / 2)^{2 k-2} \geq$ $Z_{[c]}\left(M_{k}\right)$.

If $\# G=q^{N}$, where q is a prime integer and $N \geq 1$, then $Z_{[c]}\left(M_{k}\right) \in \mathbb{Z}$ is divisible by $q^{N / 2}$ for even N and by $q^{(N+1) / 2}$ for odd N.

Formula (1.3) is suggested by the fact that the Dijkgraaf-Witten invariant (in an arbitrary dimension n) can be extended to an n-dimensional TQFT, see [2,13,4,3]. 2-dimensional TQFTs are known to arise from semisimple algebras, see [5]. We show that the 2-dimensional Dijkgraaf-Witten invariant $Z_{[c]}$ arises from the c-twisted group algebra of G. Then we split this algebra as a direct sum of matrix algebras numerated by the elements of \widehat{G}_{c} and use a computation of the state sum invariants of surfaces derived from matrix algebras. Note that the proof of Eq. (1.3), detailed in Sections 2 and 3, actually does not use the notion of a TQFT. A version of these results for non-orientable surfaces is discussed in Section 4.

The author is indebted to Noah Snyder for a useful discussion of the non-orientable case.

2. State sum invariants of surfaces

We recall the state sum invariants of oriented surfaces associated with semisimple algebras, see [5].
Let \mathcal{A} be a finite-dimensional algebra over a field F. For $a \in \mathcal{A}$, let $T(a) \in F$ be the trace of the F-linear homomorphism $\mathcal{A} \rightarrow \mathcal{A}$ sending any $x \in \mathcal{A}$ to $a x$. The resulting F-linear mapping $T: \mathcal{A} \rightarrow F$ is called the trace homomorphism. Clearly, $T(a b)=T(b a)$ for all $a, b \in \mathcal{A}$. Therefore the bilinear form $T^{(2)}: \mathcal{A} \otimes \mathcal{A} \rightarrow F$, defined by $T^{(2)}(a \otimes b)=T(a b)$ is symmetric. Assume that \mathcal{A} is semisimple in the sense that the form $T^{(2)}$ is non-degenerate. We use the adjoint isomorphism ad $T^{(2)}$ to identify \mathcal{A} with the dual vector space $\operatorname{Hom}_{F}(\mathcal{A}, F)$. Using this identification and dualizing $T^{(2)}: \mathcal{A} \otimes \mathcal{A} \rightarrow F$, we obtain a homomorphism $F \rightarrow \mathcal{A} \otimes \mathcal{A}$. It sends $1 \in F$ to a vector

$$
v=\sum_{i} v_{i}^{1} \otimes v_{i}^{2} \in \mathcal{A} \otimes \mathcal{A},
$$

where i runs over a finite set of indices. The vector $v=v(\mathcal{A})$ is uniquely defined by the identity

$$
\begin{equation*}
T(a b)=\sum_{i} T\left(a v_{i}^{1}\right) T\left(b v_{i}^{2}\right) \tag{2.1}
\end{equation*}
$$

for all $a, b \in \mathcal{A}$. The vector v is symmetric in the sense that $\sum_{i} v_{i}^{1} \otimes v_{i}^{2}=\sum_{i} v_{i}^{2} \otimes v_{i}^{1}$.
Consider a closed connected oriented surface M and fix a triangulation of M. We endow all 2 -simplices of the triangulation of M with distinguished orientation induced by the one in M. A flag of M is a pair (a 2-simplex of the triangulation, an edge of this 2 -simplex). Let $\left\{\mathcal{A}_{f}\right\}_{f}$ be a set of copies of \mathcal{A} numerated by all flags f of M. Every edge e of (the triangulation of) M is incident to two 2-simplices Δ, Δ^{\prime} of M. Let $v_{e} \in \mathcal{A}_{(\Delta, e)} \otimes \mathcal{A}_{\left(\Delta^{\prime}, e\right)}$ be a copy of $v \in \mathcal{A} \otimes \mathcal{A}$. The symmetry of v ensures that v_{e} is well-defined. Set $V=\otimes_{e} v_{e} \in \otimes_{f} \mathcal{A}_{f}$, where e runs over all edges of M and f runs over all flags of M.

We say that a trilinear form $U: \mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A} \rightarrow F$ is cyclically symmetric if

$$
U(a \otimes b \otimes c)=U(c \otimes a \otimes b)
$$

for all $a, b, c \in \mathcal{A}$. Then U induces a homomorphism $\widetilde{U}: \otimes_{f} \mathcal{A}_{f} \rightarrow F$ as follows. Every 2-simplex Δ of M has three edges e_{1}, e_{2}, e_{3} numerated so that following along the boundary of Δ in the direction determined by the distinguished orientation of Δ, one meets consecutively e_{1}, e_{2}, e_{3}. Since $\mathcal{A}_{\left(\Delta, e_{i}\right)}=\mathcal{A}$ for $i=1,2,3$, the form U induces a trilinear form

$$
U_{\Delta}: \mathcal{A}_{\left(\Delta, e_{1}\right)} \otimes \mathcal{A}_{\left(\Delta, e_{2}\right)} \otimes \mathcal{A}_{\left(\Delta, e_{3}\right)} \rightarrow F
$$

This form is cyclically symmetric and therefore independent of the numeration of the edges of Δ. The tensor product $\otimes_{\Delta} U_{\Delta}$ over all 2-simplices Δ of M is a homomorphism $\otimes_{f} \mathcal{A}_{f} \rightarrow F$ denoted \widetilde{U}.

The form $T^{(3)}: \mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A} \rightarrow F$ sending $a \otimes b \otimes c$ to $T(a b c)$ for all $a, b, c \in \mathcal{A}$ is cyclically symmetric. Consider the induced homomorphism $\widetilde{T}^{(3)}: \bigotimes_{f} \mathcal{A}_{f} \rightarrow F$ and set $I_{\mathcal{A}}(M)=\widetilde{T}^{(3)}(V) \in F$. The key property of $I_{\mathcal{A}}(M)$ is the independence of the choice of triangulation of M. It is verified by checking the invariance of $I_{\mathcal{A}}(M)$ under the Pachner moves on the triangulations.

The direct product and the tensor product of two semisimple algebras are semisimple algebras. The invariant $I_{\mathcal{A}}(M)$ is additive with respect to direct products of algebras and multiplicative with respect to tensor products of algebras.

Lemma 2.1. We have $I_{\mathcal{A}}\left(S^{2}\right)=\left(\operatorname{dim}_{F} \mathcal{A}\right) \cdot 1_{F}$.
Proof. To compute $I_{\mathcal{A}}\left(S^{2}\right)$, we use the technique of skeletons (this technique will not be used elsewhere in this paper). A skeleton of a surface M is a finite graph embedded in M whose complement in M consists of open 2disks. A triangulation of M gives rise to a skeleton of M whose vertices are the barycenters of the 2-simplices of the triangulation and whose edges are dual to the edges of the triangulation. One can rewrite the definition of $I_{\mathcal{A}}(M)$ in terms of state sums on skeletons, see [5,12]. Namely, one assigns $v=\sum_{i} v_{i}^{1} \otimes v_{i}^{2}$ to each edge of the skeleton meaning that the index i is assigned to the edge, the element v_{i}^{1} of \mathcal{A} is assigned to one half-edge and v_{i}^{2} to the other half-edge. For each vertex of the skeleton, one cyclically multiplies the elements of \mathcal{A} assigned in this way to all incident half-edges and evaluates T on this product. These values of T are multiplied over all vertices of the skeleton and the results are summed over all the indices i sitting on the edges. The resulting sum is equal to $I_{\mathcal{A}}(M)$.

The 2-sphere S^{2} has a skeleton $S^{1} \subset S^{2}$ having one vertex and one edge. This gives $I_{\mathcal{A}}\left(S^{2}\right)=\sum_{i} T\left(v_{i}^{1} v_{i}^{2}\right)$. To compute the latter expression, we can assume that the vectors $\left\{v_{i}^{1}\right\}_{i}$ in the expansion $v=\sum_{i} v_{i}^{1} \otimes v_{i}^{2}$ form a basis of \mathcal{A}. Formula (2.1) implies that

$$
T^{(2)}(a, b)=T^{(2)}\left(a, \sum_{i} T\left(b v_{i}^{2}\right) v_{i}^{1}\right)
$$

where $T^{(2)}(a, b)=T(a b)$ for $a, b \in \mathcal{A}$. Since the bilinear form $T^{(2)}$ is non-degenerate, $b=\sum_{i} T\left(b v_{i}^{2}\right) v_{i}^{1}$ for all $b \in \mathcal{A}$. For $b=v_{j}^{1}$, this gives $v_{j}^{1}=\sum_{i} T\left(v_{j}^{1} v_{i}^{2}\right) v_{i}^{1}$. Since $\left\{v_{i}^{1}\right\}_{i}$ is a basis of \mathcal{A}, we have $T\left(v_{j}^{1} v_{i}^{2}\right)=1$ if $i=j$ and $T\left(v_{j}^{1} v_{i}^{2}\right)=0$ if $i \neq j$.

The trace of any F-linear homomorphism $f: \mathcal{A} \rightarrow \mathcal{A}$ can be expanded via the trace homomorphism $T: \mathcal{A} \rightarrow F$ as follows. Represent f by a matrix $\left(f_{i, j}\right)$ over F in the basis $\left\{v_{i}^{1}\right\}_{i}$ so that $f\left(v_{i}^{1}\right)=\sum_{j} f_{i, j} v_{j}^{1}$ for all i. Then

$$
\operatorname{Tr}(f)=\sum_{i} f_{i, i}=\sum_{i, j} f_{i, j} T\left(v_{j}^{1} v_{i}^{2}\right)=\sum_{i} T\left(f\left(v_{i}^{1}\right) v_{i}^{2}\right) .
$$

Pick $a \in \mathcal{A}$ and consider the homomorphism $f_{a}: \mathcal{A} \rightarrow \mathcal{A}$ sending any $x \in \mathcal{A}$ to $a x$. By the previous formula,

$$
T^{(2)}\left(a, 1_{\mathcal{A}}\right)=T(a)=\operatorname{Tr}\left(f_{a}\right)=T\left(\sum_{i} a v_{i}^{1} v_{i}^{2}\right)=T^{(2)}\left(a, \sum_{i} v_{i}^{1} v_{i}^{2}\right),
$$

where $1_{\mathcal{A}}$ is the unit of \mathcal{A}. The non-degeneracy of $T^{(2)}$ implies that $\sum_{i} v_{i}^{1} v_{i}^{2}=1_{\mathcal{A}}$. Thus,

$$
I_{\mathcal{A}}\left(S^{2}\right)=T\left(\sum_{i} v_{i}^{1} v_{i}^{2}\right)=T\left(1_{\mathcal{A}}\right)=\left(\operatorname{dim}_{F} \mathcal{A}\right) \cdot 1_{F}
$$

Example. Let $\mathcal{A}=\operatorname{Mat}_{d}(F)$ be the algebra of $(d \times d)$-matrices over F with $d \geq 1$. This algebra is semisimple if and only if d is invertible in F and then $I_{\mathcal{A}}(M)=d^{\chi(M)} \cdot 1_{F}$ for any closed connected oriented surface M, see [11, Theorem 4.2]. For $d=1$, we obtain $I_{F}(M)=1_{F}$ for all M.

3. Invariants derived from twisted group algebras

Let G be a group and $F[G]$ be the vector space over a field F with basis G. A normalized 2-cocycle $c: G \times G \rightarrow$ F^{*} gives rise to a multiplication law \cdot on $F[G]$ by $g_{1} \cdot g_{2}=c\left(g_{1}, g_{2}\right) g_{1} g_{2}$, where g_{1}, g_{2} run over G and $g_{1} g_{2} \in G$ is the product in G. The vector space $F[G]$ with this multiplication is an associative algebra and the neutral element $1 \in G \subset F[G]$ is its unit. This algebra is called the twisted group algebra of G and denoted $A^{(c)}$. It is easy to check that the isomorphism type of $A^{(c)}$ depends only on the cohomology class $[c] \in H^{2}\left(G ; F^{*}\right)$.

From now on, G is a finite group whose order \#G is invertible in F. The algebra $A^{(c)}$ is (\#G)-dimensional and the trace homomorphism $T: A^{(c)} \rightarrow F$ defined in Section 2 sends $1 \in G$ to $\# G$ and sends all other basis vectors of $A^{(c)}$ to zero. The associated bilinear form $T^{(2)}: A^{(c)} \otimes A^{(c)} \rightarrow F$ sends a pair of basis vectors $g_{1}, g_{2} \in G$ to $\# G$ if $g_{2}=g_{1}^{-1}$ and to 0 otherwise. This form is non-degenerate and so the algebra $A^{(c)}$ is semisimple. The following theorem shows that the state sum invariant of surfaces $I_{A^{(c)}}$ is equivalent to the Dijkgraaf-Witten invariant derived from $[c] \in H^{2}\left(G ; F^{*}\right)$.

Theorem 3.1. For any normalized 2 -cocycle $c: G \times G \rightarrow F^{*}$ on G and any closed connected oriented surface M,

$$
Z_{[c]}(M)=(\# G)^{-\chi(M)} I_{A^{(c)}}(M) .
$$

Proof. Fix a triangulation of M and let k_{0}, k_{1}, k_{2} be respectively the number of vertices, edges, and 2 -simplices of this triangulation. By an oriented edge of M we mean an edge of (the triangulation of) M endowed with an arbitrary orientation. For an oriented edge e of M, the same edge with opposite orientation is denoted $-e$. A labeling of M is a mapping ℓ from the set of oriented edges of M to G such that $\ell(-e)=(\ell(e))^{-1}$ for all oriented edges e of M. A labeling ℓ of M is admissible if $\ell\left(e_{1}\right) \ell\left(e_{2}\right) \ell\left(e_{3}\right)=1$ for any three consecutive oriented edges e_{1}, e_{2}, e_{3} forming the
boundary of a 2-simplex of (the triangulation of) M. Denote the set of labelings of M by $L(M)$ and denote its subset formed by the admissible labelings by $L_{a}(M)$.

Given a labeling $\ell \in L(M)$, we assign to any path p in M formed by consecutive oriented edges e_{1}, \ldots, e_{N} the product $\ell(p)=\ell\left(e_{1}\right) \ell\left(e_{2}\right) \cdots \ell\left(e_{N}\right) \in G$. For admissible ℓ, this product is a homotopy invariant of p : if two paths p, p^{\prime} have the same endpoints and are homotopic (relative to the endpoints), then $\ell(p)=\ell\left(p^{\prime}\right)$.

Fix a base vertex $m_{0} \in M$ and set $\pi=\pi_{1}\left(M, m_{0}\right)$. For any $\ell \in L_{a}(M)$, applying the mapping $p \mapsto \ell(p)$ to the loops in M based at m_{0}, we obtain a group homomorphism $\pi \rightarrow G$ denoted $\Gamma(\ell)$. The formula $\ell \mapsto \Gamma(\ell)$ defines a mapping $\Gamma: L_{a}(M) \rightarrow \operatorname{Hom}(\pi, G)$.

We claim that the pre-image $\Gamma^{-1}(\gamma)$ of any $\gamma \in \operatorname{Hom}(\pi, G)$ consists of $(\# G)^{k_{0}-1}$ admissible labelings. To see this, fix a spanning tree $R \subset M$ formed by all k_{0} vertices and $k_{0}-1$ edges of M; here we use that M is connected. For every vertex m of M, there is a (unique up to homotopy) path p_{m} in R formed by oriented edges of R and leading from m_{0} to m. Any oriented edge e of M not lying in R determines a loop $p_{s_{e}} e\left(p_{t_{e}}\right)^{-1}$, where s_{e} and t_{e} are the initial and the terminal endpoints of e, respectively. The homotopy classes of such loops corresponding to all oriented edges e of M not lying in R generate the fundamental group π. Therefore the pre-image of $\gamma \in \operatorname{Hom}(\pi, G)$ consists of the labelings $\ell \in L_{a}(M)$ such that $\ell\left(p_{s_{e}} e\left(p_{t_{e}}\right)^{-1}\right)=\gamma\left(p_{s_{e}} e\left(p_{t_{e}}\right)^{-1}\right)$ for all e as above. This equality may be rewritten as

$$
\begin{equation*}
\ell(e)=\left(\ell\left(p_{s_{e}}\right)\right)^{-1} \gamma\left(p_{s_{e}} e\left(p_{t_{e}}\right)^{-1}\right) \ell\left(p_{t_{e}}\right) . \tag{3.1}
\end{equation*}
$$

Therefore to specify $\ell \in \Gamma^{-1}(\gamma)$, we can assign arbitrary labels to the $k_{0}-1$ edges of R oriented away from m_{0}, the inverse labels to the same edges oriented towards m_{0}, and the labels determined from Eq. (3.1) to the oriented edges of M not lying in R. The resulting labeling is necessarily admissible. Hence, $\# \Gamma^{-1}(\gamma)=(\# G)^{k_{0}-1}$.

Formula (1.1) and the results above imply that

$$
Z_{[c]}(M)=(\# G)^{-k_{0}} \sum_{\ell \in L_{a}(M)}\left\langle\left(f_{\Gamma(\ell)}\right)^{*}([c]),[M]\right\rangle \in F,
$$

where $f_{\Gamma(\ell)}$ is a mapping from the pair $\left(M, m_{0}\right)$ to the pair (an Eilenberg-MacLane space X of type $K(G, 1)$, a base point $x \in X$) such that the induced homomorphism of fundamental groups is equal to $\Gamma(\ell): \pi \rightarrow G$. Choosing in the role of X the canonical realization of the Eilenberg-MacLane space $K(G, 1)$ associated with the standard resolution of the $\mathbb{Z}[G]$-module \mathbb{Z} (see, for instance, [1]), we can compute $\left\langle\left(f_{\Gamma(\ell)}\right)^{*}([c]),[M]\right\rangle$ as follows. Fix a total order $<$ on the set of all vertices of M. A 2-simplex Δ of M has three vertices A, B, C with $A<B<C$. Set $\varepsilon_{\Delta}=+1$ if the distinguished orientation of Δ (induced by the one on M) induces the direction from A to B on the edge $A B \subset \partial \Delta$ and set $\varepsilon_{\Delta}=-1$ otherwise. Let $\ell_{1}^{\Delta}=\ell(A B)$ and $\ell_{2}^{\Delta}=\ell(B C)$ be the labels of the edges $A B, B C$ oriented from A to B and from B to C, respectively. Then

$$
\left\langle\left(f_{\Gamma(\ell)}\right)^{*}([c]),[M]\right\rangle=\prod_{\Delta} c\left(\ell_{1}^{\Delta}, \ell_{2}^{\Delta}\right)^{\varepsilon_{\Delta}} \in F^{*}
$$

where Δ runs over all 2 -simplices of M. Hence,

$$
\begin{equation*}
Z_{[c]}(M)=(\# G)^{-k_{0}} \sum_{\ell \in L_{a}(M)} \prod_{\Delta} c\left(\ell_{1}^{\Delta}, \ell_{2}^{\Delta}\right)^{\varepsilon} \Delta \tag{3.2}
\end{equation*}
$$

We now compute $I_{\mathcal{A}}(M) \in F$ for $\mathcal{A}=A^{(c)}$. First, with each labeling $\ell \in L(M)$ we associate an element $\langle c, \ell\rangle$ of F^{*}. Observe that $c\left(g, g^{-1}\right)=c\left(g^{-1}, g\right)$ for all $g \in G$ (this is obtained from Eq. (1.2) by the substitution $g_{1}=g_{3}=g$ and $g_{2}=g^{-1}$). Therefore for any oriented edge e of M, the expression $c(\ell(e), \ell(-e))=c(\ell(-e), \ell(e)) \in F^{*}$ does not depend on the orientation of e and may be associated with the underlying unoriented edge. Set

$$
\langle c, \ell\rangle=\prod_{e} c(\ell(e), \ell(-e)) \in F^{*}
$$

where e runs over all non-oriented edges of M.
Let as above $\left\{\mathcal{A}_{f}\right\}_{f}$ be a set of copies of \mathcal{A} numerated by all flags f of M. With a labeling $\ell \in L(M)$ we associate a vector $V(\ell) \in \otimes_{f} \mathcal{A}_{f}$ as follows. For a flag f formed by a 2 -simplex Δ and its edge e, the distinguished orientation of Δ induces an orientation of e. Let $\ell(f) \in G \subset \mathcal{A}=\mathcal{A}_{f}$ be the value of ℓ on this oriented edge. Set $V(\ell)=\otimes_{f} \ell(f)$.

Recall the homomorphisms $T: \mathcal{A} \rightarrow F, T^{(3)}: \mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A} \rightarrow F$, and the vector $v \in \mathcal{A} \otimes \mathcal{A}$ introduced in Section 2. It is easy to compute that

$$
v=(\# G)^{-1} \sum_{g \in G}\left(c\left(g, g^{-1}\right)\right)^{-1} g \otimes g^{-1} .
$$

Therefore the vector $V=\otimes_{e} v_{e} \in \otimes_{f} \mathcal{A}_{f}$ is computed by

$$
V=(\# G)^{-k_{1}} \sum_{\ell \in L(M)}\langle c, \ell\rangle^{-1} V(\ell) .
$$

For any $g_{1}, g_{2}, g_{3} \in G$, we have $T^{(3)}\left(g_{1} \otimes g_{2} \otimes g_{3}\right)=0$ if $g_{1} g_{2} g_{3} \neq 1$ and

$$
T^{(3)}\left(g_{1} \otimes g_{2} \otimes g_{3}\right)=T\left(g_{1} g_{2} g_{3}\right)=\# G c\left(g_{1}, g_{2}\right) c\left(g_{1} g_{2}, g_{3}\right)
$$

if $g_{1} g_{2} g_{3}=1$. Consider the homomorphism $U=(\# G)^{-1} T^{(3)}: \mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A} \rightarrow F$ sending $g_{1} \otimes g_{2} \otimes g_{3}$ to 0 if $g_{1} g_{2} g_{3} \neq 1$ and to $c\left(g_{1}, g_{2}\right) c\left(g_{1} g_{2}, g_{3}\right)$ if $g_{1} g_{2} g_{3}=1$. The cyclic symmetry of $T^{(3)}$ implies that U is cyclically symmetric. Then

$$
I_{\mathcal{A}}(M)=\widetilde{T}^{(3)}(V)=(\# G)^{k_{2}} \widetilde{U}(V)=(\# G)^{k_{2}-k_{1}} \sum_{\ell \in L(M)}\langle c, \ell\rangle^{-1} \tilde{U}(V(\ell)) .
$$

It is clear that $k_{2}-k_{1}=\chi(M)-k_{0}$ and $\tilde{U}(V(\ell))=0$ for non-admissible ℓ. Hence

$$
\begin{equation*}
I_{\mathcal{A}}(M)=(\# G)^{\chi(M)-k_{0}} \sum_{\ell \in L_{a}(M)}\langle c, \ell\rangle^{-1} \tilde{U}(V(\ell)) . \tag{3.3}
\end{equation*}
$$

To compute $\widetilde{U}(V(\ell))$ for $\ell \in L_{a}(M)$, we use the total order $<$ on the set of vertices of M. With a 2-simplex $\Delta=A B C$ of M with $A<B<C$ we associated above a sign $\varepsilon_{\Delta}= \pm 1$ and two labels $g_{1}=\ell_{1}^{\Delta}=\ell(A B) \in G$ and $g_{2}=\ell_{2}^{\Delta}=\ell(B C) \in G$. Set also $g_{3}=\ell_{3}^{\Delta}=\ell(C A) \in G$. The admissibility of ℓ implies that $g_{1} g_{2} g_{3}=1$. The 2-simplex Δ gives rise to the flags $(\Delta, A B),(\Delta, B C)$, and $(\Delta, C A)$. These flags contribute to $V(\ell)$ the tensor factor

$$
\left(g_{1}\right)^{\varepsilon \Delta} \otimes\left(g_{2}\right)^{\varepsilon \Delta} \otimes\left(g_{3}\right)^{\varepsilon \Delta} \in \mathcal{A}_{(\Delta, A B)} \otimes \mathcal{A}_{(\Delta, B C)} \otimes \mathcal{A}_{(\Delta, C A)}
$$

Recall the trilinear form $U_{\Delta}: \mathcal{A}_{(\Delta, A B)} \otimes \mathcal{A}_{(\Delta, B C)} \otimes \mathcal{A}_{(\Delta, C A)} \rightarrow F$ introduced in Section 2. If $\varepsilon_{\Delta}=+1$, then

$$
\begin{aligned}
U_{\Delta}\left(\left(g_{1}\right)^{\varepsilon_{\Delta}} \otimes\left(g_{2}\right)^{\varepsilon \Delta} \otimes\left(g_{3}\right)^{\varepsilon \Delta}\right) & =U\left(g_{1} \otimes g_{2} \otimes g_{3}\right)=c\left(g_{1}, g_{2}\right) c\left(g_{1} g_{2}, g_{3}\right) \\
& =c\left(g_{1}, g_{2}\right) c\left(g_{3}^{-1}, g_{3}\right)=c\left(g_{1}, g_{2}\right) c\left(g_{3}, g_{3}^{-1}\right) .
\end{aligned}
$$

If $\varepsilon_{\Delta}=-1$, then

$$
\begin{aligned}
U_{\Delta}\left(\left(g_{1}\right)^{\varepsilon_{\Delta}} \otimes\left(g_{2}\right)^{\varepsilon \Delta} \otimes\left(g_{3}\right)^{\varepsilon_{\Delta}}\right) & =U_{\Delta}\left(g_{1}^{-1} \otimes g_{2}^{-1} \otimes g_{3}^{-1}\right)=U\left(g_{3}^{-1} \otimes g_{2}^{-1} \otimes g_{1}^{-1}\right) \\
& =c\left(g_{3}^{-1}, g_{2}^{-1}\right) c\left(g_{3}^{-1} g_{2}^{-1}, g_{1}^{-1}\right)=c\left(g_{1} g_{2}, g_{2}^{-1}\right) c\left(g_{1}, g_{1}^{-1}\right) \\
& =\left(c\left(g_{1}, g_{2}\right)\right)^{-1} c\left(g_{1}, g_{1}^{-1}\right) c\left(g_{2}, g_{2}^{-1}\right)
\end{aligned}
$$

The last equality follows from (1.2), where we set $g_{3}=g_{2}^{-1}$. In both cases

$$
U_{\Delta}\left(\left(g_{1}\right)^{\varepsilon \Delta} \otimes\left(g_{2}\right)^{\varepsilon \Delta} \otimes\left(g_{3}\right)^{\varepsilon \Delta}\right)=c\left(g_{1}, g_{2}\right)^{\varepsilon \Delta} u_{\Delta}
$$

where $u_{\Delta}=c\left(g_{3}, g_{3}^{-1}\right)$ if $\varepsilon_{\Delta}=+1$ and $u_{\Delta}=c\left(g_{1}, g_{1}^{-1}\right) c\left(g_{2}, g_{2}^{-1}\right)$ if $\varepsilon_{\Delta}=-1$. We conclude that

$$
\begin{equation*}
\tilde{U}(V(\ell))=\prod_{\Delta} c\left(\ell_{1}^{\Delta}, \ell_{2}^{\Delta}\right)^{\varepsilon_{\Delta} u_{\Delta}}, \tag{3.4}
\end{equation*}
$$

where Δ runs over all 2 -simplices of M.
We claim that $\prod_{\Delta} u_{\Delta}=\langle c, \ell\rangle$. Note that the product $\prod_{\Delta} u_{\Delta}$ expands as a product of the expressions $c(\ell(e), \ell(-e))$ associated with edges e of M. We show that every edge $e=A B$ of M with $A<B$ contributes exactly one such expression. Set $g=\ell(A B) \in G$. The edge $A B$ is incident to two 2-simplices $\Delta=A B C$ and $\Delta^{\prime}=A B C^{\prime}$ of M whose distinguished orientations induce on $A B=\partial \Delta \cap \partial \Delta^{\prime}$ the directions from B to A and from A to B, respectively. If $B<C$, then $\varepsilon_{\Delta}=-1, g=\ell_{1}^{\Delta}$, and $A B$ contributes the factor $c\left(g, g^{-1}\right)$ to u_{Δ}. If $C<A$,
then $\varepsilon_{\Delta}=-1, g=\ell_{2}^{\Delta}$, and $A B$ contributes the factor $c\left(g, g^{-1}\right)$ to u_{Δ}. Finally, if $A<C<B$, then $\varepsilon_{\Delta}=+1$, $g=\ell_{3}^{\Delta}$, and $u_{\Delta}=c\left(g, g^{-1}\right)$. A similar computation shows that $A B$ contributes no factors to $u_{\Delta^{\prime}}$. Therefore

$$
\prod_{\Delta} u_{\Delta}=\prod_{e} c(\ell(e), \ell(-e))=\langle c, \ell\rangle .
$$

Substituting this in (3.4), we obtain

$$
\widetilde{U}(V(\ell))=\prod_{\Delta} c\left(\ell_{1}^{\Delta}, \ell_{2}^{\Delta}\right)^{\varepsilon_{\Delta}} \times\langle c, \ell\rangle .
$$

Formula (3.3) yields

$$
I_{\mathcal{A}}(M)=(\# G)^{\chi(M)-k_{0}} \sum_{\ell \in L_{a}(M)} \prod_{\Delta} c\left(\ell_{1}^{\Delta}, \ell_{2}^{\Delta}\right)^{\varepsilon_{\Delta}} .
$$

Comparing with (3.2), we obtain the claim of the theorem.
Since the algebra $A^{(c)}$ is finite-dimensional and semisimple, the isomorphism classes of simple $A^{(c)}$-modules form a finite non-empty set Λ (an $A^{(c)}$-module is simple if its only $A^{(c)}$-submodules are itself and zero). Let $\left\{V_{\lambda}\right\}_{\lambda \in \Lambda}$ be representatives of these isomorphism classes. Then

$$
\begin{equation*}
A^{(c)} \cong \bigoplus_{\lambda \in \Lambda} \operatorname{Mat}_{d_{\lambda}}\left(D_{\lambda}\right)=\bigoplus_{\lambda \in \Lambda} D_{\lambda} \otimes_{F} \operatorname{Mat}_{d_{\lambda}}(F) \tag{3.5}
\end{equation*}
$$

where $D_{\lambda}=\operatorname{End}_{A^{(c)}}\left(V_{\lambda}\right)$ is a division F-algebra (i.e., an F-algebra in which all non-zero elements are invertible), d_{λ} is the dimension of V_{λ} as a D_{λ}-module, and $\operatorname{Mat}_{d}(D)$ with $d \geq 1$ is the algebra of $(d \times d)$-matrices over the ring D. The integer d_{λ} is invertible in F for all λ, because the algebra $\operatorname{Mat}_{d_{\lambda}}\left(D_{\lambda}\right)$ is a direct summand of $A^{(c)}$ and is therefore semisimple. Theorem 3.1 implies that (under the conditions of this theorem)

$$
\begin{equation*}
Z_{[c]}(M)=(\# G)^{-\chi(M)} \sum_{\lambda \in \Lambda} I_{D_{\lambda}}(M) d_{\lambda}^{\chi(M)} . \tag{3.6}
\end{equation*}
$$

We can check (3.6) directly for $M=S^{2}$. Indeed, $Z_{[c]}\left(S^{2}\right)=(\# G)^{-1} \cdot 1_{F}$ and by Lemma 2.1, $I_{D_{\lambda}}\left(S^{2}\right)=$ ($\operatorname{dim}_{F} D_{\lambda}$) $\cdot 1_{F}$ for all $\lambda \in \Lambda$. Therefore (3.6) for $M=S^{2}$ follows from the equality

$$
\begin{equation*}
\# G=\sum_{\lambda \in \Lambda}\left(\operatorname{dim}_{F} D_{\lambda}\right) d_{\lambda}^{2} \tag{3.7}
\end{equation*}
$$

which is a consequence of (3.5).
Formulas (3.6) and (3.7) simplify in the case where F is algebraically closed. Then $D_{\lambda}=F$ for all $\lambda \in \Lambda$ and we obtain

$$
\begin{equation*}
Z_{[c]}(M)=(\# G)^{-\chi(M)} \sum_{\lambda \in \Lambda} d_{\lambda}^{\chi(M)} \cdot 1_{F} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\# G=\sum_{\lambda \in \Lambda} d_{\lambda}^{2} \tag{3.9}
\end{equation*}
$$

In particular, $Z_{[c]}\left(S^{1} \times S^{1}\right)=\# \Lambda \cdot 1_{F}$. The number \# Λ, that is the number of isomorphism classes of simple $A^{(c)}{ }_{-}$ modules, can be computed in terms of the so-called c-regular classes of G, see [8, pp. 107-118]. An element $g \in G$ is c-regular if $c(g, h)=c(h, g)$ for all $h \in G$ such that $g h=h g$. The set of c-regular elements of G depends only on the cohomology class $[c] \in H^{2}\left(G ; F^{*}\right)$ and is invariant under conjugation in G. Since F is algebraically closed (and as always in this paper, $\# G$ is invertible in $F)$, \# $\Lambda=r(G ; c)$, where $r(G ; c)$ is the number of conjugacy classes of c-regular elements of G, see [8, p. 117].
Proof of Theorem 1.2. Any c-representation of G in the sense of Section 1 extends by linearity to an action of $A^{(c)}$ on the corresponding vector space. This gives a bijective correspondence between c-representations of G and $A^{(c)}$ modules of finite dimension over F. This correspondence transforms equivalent representations to isomorphic $A^{(c)}$ modules and irreducible representations to simple modules. This allows us to rewrite all the statements of this section
in terms of the c-representations of G. In particular, the set \widehat{G}_{c} of equivalence classes of irreducible c-representations of G is finite and non-empty. Now, Formula (3.8) directly implies (1.3). Note also that Formula (3.9) implies (1.4).

Remark 3.2. Formula (1.5) generalizes to surfaces with boundary as follows (see [10,6]). Let π be the fundamental group of a compact connected oriented surface M whose boundary consists of $k \geq 1$ circles and let x_{1}, \ldots, x_{k} be the conjugacy classes in π represented by the components of ∂M. For any $g_{1}, \ldots, g_{k} \in G$, the number of homomorphisms $\varphi: \pi \rightarrow G$ such that $\varphi\left(x_{i}\right)$ is conjugate to g_{i} in G for all $i=1, \ldots, k$ is equal to

$$
\# G \sum_{\rho \in \widehat{G}}\left(\frac{\# G}{\operatorname{dim} \rho}\right)^{-\chi(M)} \prod_{i=1}^{k} \chi_{\rho}\left(g_{i}\right)(\bmod p),
$$

where $\chi_{\rho}: G \rightarrow F$ is the characteristic of ρ and p is the characteristic of F. It would be interesting to give a similar generalization of (1.3).

4. The non-orientable case

A non-oriented version of the Dijkgraaf-Witten invariant in dimension $n \geq 1$ can be defined as follows. Let G be a finite group and $\alpha \in H^{n}(G ; \mathbb{Z} / 2 \mathbb{Z})$. For a closed connected n-dimensional topological manifold M with fundamental group π, set

$$
Z_{\alpha}(M)=(\# G)^{-1} \sum_{\gamma \in \operatorname{Hom}(\pi, G)}(-1)^{\left\langle\left(f_{\gamma}\right)^{*}(\alpha),[M]\right\rangle} \in(\# G)^{-1} \mathbb{Z}
$$

where $f_{\gamma}: M \rightarrow K(G, 1)$ is as in Section 1 and $\left\langle\left(f_{\gamma}\right)^{*}(\alpha),[M]\right\rangle \in \mathbb{Z} / 2 \mathbb{Z}$ is the value of $\left(f_{\gamma}\right)^{*}(\alpha) \in H^{n}(M ; \mathbb{Z} / 2 \mathbb{Z})$ on the fundamental class $[M] \in H_{n}(M ; \mathbb{Z} / 2 \mathbb{Z})$. For orientable M, this is a special case of the definition given in Section 1. We therefore restrict ourselves to non-orientable M. From now on, $n=2$.

We formulate a Verlinde-type formula for $Z_{\alpha}(M)$. Fix a normalized 2-cocycle c on G with values in the cyclic group of order two $\{ \pm 1\}$. Fix a field F such that $\# G$ is invertible in F. An irreducible c-representation $\rho: G \rightarrow G L(W)$, where W is a finite-dimensional vector space over F, is self-dual if there is a non-degenerate bilinear form $\langle\rangle:, W \times W \rightarrow F$ such that $\langle\rho(g)(u), \rho(g)(v)\rangle=\langle u, v\rangle$ for all $g \in G$ and $u, v \in W$. The irreducibility of ρ easily implies that the form \langle,$\rangle has to be either symmetric or skew-symmetric. Set \varepsilon_{\rho}=1 \in F$ in the former case and $\varepsilon_{\rho}=-1 \in F$ in the latter case. For any non-self-dual irreducible c-representation ρ, set $\varepsilon_{\rho}=0 \in F$. The formula $\rho \mapsto \varepsilon_{\rho}$ yields a well-defined function $\widehat{G}_{c} \rightarrow\{-1,0,1\} \subset F$. This function plays the role of the Frobenius-Schur indicator in the theory of representations over \mathbb{C}.

Composing $c: G \times G \rightarrow\{ \pm 1\}$ with the isomorphism $\{ \pm 1\} \approx \mathbb{Z} / 2 \mathbb{Z}$, we obtain a $(\mathbb{Z} / 2 \mathbb{Z})$-valued 2-cocycle on G. Its cohomology class in $H^{2}(G ; \mathbb{Z} / 2 \mathbb{Z})$ is denoted $[c]$.

Theorem 4.1. If F is an algebraically closed field, then for any normalized 2-cocycle $c: G \times G \rightarrow\{ \pm 1\}$ and any closed connected non-orientable surface M,

$$
\begin{equation*}
Z_{[c]}(M)=(\# G)^{-\chi(M)} \sum_{\rho \in \widehat{G} \widehat{G}_{c}}\left(\varepsilon_{\rho} \operatorname{dim} \rho\right)^{\chi(M)} . \tag{4.1}
\end{equation*}
$$

Note that $\chi(M) \leq 0$ for all closed connected non-orientable surfaces M distinct from the real projective plane P^{2}.
Corollary 4.2. Let F be a field of characteristic $p \geq 0$ and $\alpha \in H^{2}(G ; \mathbb{Z} / 2 \mathbb{Z})$. If $p=0$, then $Z_{\alpha}(M) \in F$ is a non-negative integer for all closed connected non-orientable surfaces $M \neq P^{2}$. If $p>0$, then $Z_{\alpha}(M) \in \mathbb{Z} / p \mathbb{Z} \subset F$ for all closed connected non-orientable surfaces M.

The proof of Theorem 4.1 uses state sum invariants of non-oriented surfaces introduced by Karimipour and Mostafazadeh [7], see also [11]. These invariants are derived from the so-called $*$-algebras. A $*$-algebra over a field F (not necessarily algebraically closed) is a finite-dimensional algebra \mathcal{A} over F endowed with an F-linear involution $\mathcal{A} \rightarrow \mathcal{A}, a \mapsto a^{*}$ such that $(a b)^{*}=b^{*} a^{*}$ for all $a, b \in \mathcal{A}$ and $T\left(a^{*}\right)=T(a)$ for all $a \in \mathcal{A}$, where $T: \mathcal{A} \rightarrow F$ is the trace homomorphism defined in Section 2. Note that for any $a, b \in \mathcal{A}$,

$$
T\left(a^{*} b\right)=T\left(\left(a^{*} b\right)^{*}\right)=T\left(b^{*} a\right)=T\left(a b^{*}\right) .
$$

A $*$-algebra \mathcal{A} is semisimple if the bilinear form $T^{(2)}: \mathcal{A} \otimes \mathcal{A} \rightarrow F$, defined by $a \otimes b \mapsto T(a b)$, is non-degenerate. Consider the vector $v=\sum_{i} v_{i}^{1} \otimes v_{i}^{2} \in \mathcal{A} \otimes \mathcal{A}$ satisfying (2.1) and note that

$$
\begin{equation*}
\left(\operatorname{id}_{\mathcal{A}} \otimes *\right)(v)=(* \otimes \mathrm{id})(v) \tag{4.2}
\end{equation*}
$$

Indeed, for any $a, b \in \mathcal{A}$,

$$
\begin{aligned}
\sum_{i} T\left(a\left(v_{i}^{1}\right)^{*}\right) T\left(b v_{i}^{2}\right) & =\sum_{i} T\left(a^{*} v_{i}^{1}\right) T\left(b v_{i}^{2}\right)=T\left(a^{*} b\right)=T\left(a b^{*}\right) \\
& =\sum_{i} T\left(a v_{i}^{1}\right) T\left(b^{*} v_{i}^{2}\right)=\sum_{i} T\left(a v_{i}^{1}\right) T\left(b\left(v_{i}^{2}\right)^{*}\right) .
\end{aligned}
$$

Now, the non-degeneracy of $T^{(2)}$ implies that $\sum_{i}\left(v_{i}^{1}\right)^{*} \otimes v_{i}^{2}=\sum_{i} v_{i}^{1} \otimes\left(v_{i}^{2}\right)^{*}$.
A semisimple $*$-algebra $(\mathcal{A}, *)$ over F gives rise to an invariant of a closed connected (non-oriented) surface M as follows (cf. [7,11]). Fix a triangulation of M and an arbitrary orientation on its 2 -simplices. Then proceed as in Section 2 with one change: the vector v_{e} assigned to an edge e is v if the orientations of two 2 -simplices adjacent to e induce opposite orientations on e and is $\left(\operatorname{id}_{\mathcal{A}} \otimes *\right)(v)=\left(* \otimes \operatorname{id}_{\mathcal{A}}\right)(v)$ otherwise. Then $I_{(\mathcal{A}, *)}(M)=\widetilde{T}^{(3)}(V) \in F$ is a topological invariant of M, where $V=\otimes_{e} v_{e}$. That $I_{(\mathcal{A}, *)}(M)$ is preserved when the orientation on a 2 -simplex is reversed follows from the formula $T(a b c)=T\left((a b c)^{*}\right)=T\left(c^{*} b^{*} a^{*}\right)$ for $a, b, c \in \mathcal{A}$. For orientable M, we have $I_{(\mathcal{A}, *)}(M)=I_{\mathcal{A}}(M)$, where $I_{\mathcal{A}}(M)$ is the invariant of Section 2 computed for an arbitrary orientation of M.

The following example was communicated to the author by Snyder, cf. [11, Theorem 4.2]. Let $\mathcal{A}=\operatorname{Mat}_{d}(F)$ with $d \geq 1$ invertible in F and let $*$ be the involution in \mathcal{A} defined by $a^{*}=Q^{-1} a^{T r} Q$, where $a \in \mathcal{A}$ and $Q \in \operatorname{Mat}_{d}(F)$ is an invertible matrix such that $Q^{\operatorname{Tr}}=\varepsilon Q$ for $\varepsilon= \pm 1$. Then the pair $(\mathcal{A}, *)$ is a semisimple $*-$ algebra and $I_{(\mathcal{A}, *)}(M)=(\varepsilon d)^{\chi(M)} \cdot 1_{F}$.

Let again $c: G \times G \rightarrow\{ \pm 1\}$ be a normalized 2-cocycle. We define a multiplication \cdot on the vector space $F[G]$ by $g_{1} \cdot g_{2}=c\left(g_{1}, g_{2}\right) g_{1} g_{2}$ for any $g_{1}, g_{2} \in G$. This turns $F[G]$ into an associative unital algebra $A^{(c)}$ with involution * defined by $g^{*}=c\left(g, g^{-1}\right) g^{-1}$ for $g \in G$. The pair $\left(A^{(c)}, *\right)$ is a semisimple $*$-algebra. The only non-obvious condition is the equality $(a b)^{*}=b^{*} a^{*}$ for $a, b \in A^{(c)}$. It suffices to check this equality for $a, b \in G$. It is equivalent then to the five-term identity

$$
c\left(a b,(a b)^{-1}\right)=c\left(a, a^{-1}\right) c\left(b, b^{-1}\right) c(a, b) c\left(b^{-1}, a^{-1}\right)
$$

To check this identity, we substitute $g_{1}=a, g_{2}=b, g_{3}=b^{-1}$ in (1.2) and obtain $c\left(a b, b^{-1}\right)=c(a, b) c\left(b, b^{-1}\right)$. Then set $g_{1}=a b, g_{2}=b^{-1}, g_{3}=a^{-1}$ in (1.2) and substitute $c\left(a b, b^{-1}\right)=c(a, b) c\left(b, b^{-1}\right)$ in the resulting formula. This yields a formula equivalent to the five-term identity.

Theorem 4.3. For any closed connected surface M,

$$
Z_{[c]}(M)=(\# G)^{-\chi(M)} I_{\left(A^{(c)}, *\right)}(M)
$$

Proof. The proof is analogous to the proof of Theorem 3.1 and we only indicate the main changes. One begins by fixing a triangulation of M and a total order on the set of the vertices. As in the proof of Theorem 3.1, we define the sets $L(M)$ and $L_{a}(M)$ of labelings and admissible labelings of M. Each 2-simplex $\Delta=A B C$ of M with $A<B<C$ is provided with distinguished orientation which induces the direction from A to B on the edge $A B$. For any $\ell \in L(M)$, set $\ell_{1}^{\Delta}=\ell(A B), \ell_{2}^{\Delta}=\ell(B C)$, and $\ell_{3}^{\Delta}=\ell(C A)$. Then

$$
\begin{equation*}
Z_{[c]}(M)=(\# G)^{-k_{0}} \sum_{\ell \in L_{a}(M)} \prod_{\Delta} c\left(\ell_{1}^{\Delta}, \ell_{2}^{\Delta}\right) \tag{4.3}
\end{equation*}
$$

Let $\mathcal{A}=A^{(c)}$. The vector $v \in \mathcal{A} \otimes \mathcal{A}$ is computed by

$$
v=(\# G)^{-1} \sum_{g \in G} c\left(g, g^{-1}\right) g \otimes g^{-1}
$$

and

$$
\left(\operatorname{id}_{\mathcal{A}} \otimes *\right)(v)=\left(* \otimes \operatorname{id}_{\mathcal{A}}\right)(v)=(\# G)^{-1} \sum_{g \in G} g \otimes g
$$

Let $\left\{\mathcal{A}_{f}\right\}_{f}$ be a set of copies of \mathcal{A} numerated by all flags f of M. With a labeling ℓ of M we associate a vector $V(\ell) \in \otimes_{f} \mathcal{A}_{f}$ as in the proof of Theorem 3.1. Then

$$
V=(\# G)^{-k_{1}} \sum_{\ell \in L(M)}\langle\langle c, \ell\rangle\rangle V(\ell),
$$

for

$$
\langle\langle c, \ell\rangle\rangle=\prod_{e} c(\ell(e), \ell(-e)) \in F^{*}
$$

where e runs over all edges of M such that the distinguished orientations of the 2-simplices adjacent to e induce opposite orientations on e.

Set $U=(\# G)^{-1} T^{(3)}: \mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A} \rightarrow F$ and observe that

$$
\begin{aligned}
I_{\left(A^{(c)}, *\right)} & =\widetilde{T}^{(3)}(V)=(\# G)^{k_{2}} \widetilde{U}(V)=(\# G)^{k_{2}-k_{1}} \sum_{\ell \in L(M)}\langle\langle c, \ell\rangle\rangle \widetilde{U}(V(\ell)) \\
& =(\# G)^{\chi(M)-k_{0}} \sum_{\ell \in L_{a}(M)}\langle\langle c, \ell\rangle\rangle \widetilde{U}(V(\ell)) .
\end{aligned}
$$

Here

$$
\tilde{U}(V(\ell))=\prod_{\Delta} c\left(\ell_{1}^{\Delta}, \ell_{2}^{\Delta}\right) u_{\Delta},
$$

where $u_{\Delta}=c\left(\ell_{3}^{\Delta},\left(\ell_{3}^{\Delta}\right)^{-1}\right)$. If an edge e of M is adjacent to the 2 -simplices Δ, Δ^{\prime}, then e contributes $c(\ell(e), \ell(-e))= \pm 1$ to the product $u_{\Delta^{\prime}} u_{\Delta^{\prime}}$ if the distinguished orientations of Δ, Δ^{\prime} induce opposite orientations on e. Otherwise e contributes +1 to $u_{\Delta} u_{\Delta^{\prime}}$. Therefore $\prod_{\Delta} u_{\Delta}=\langle\langle c, \ell\rangle\rangle$. The rest of the proof is straightforward.

Proof of Theorem 4.1. To deduce Theorem 4.1 from Theorem 4.3, we split $A^{(c)}$ as a direct product of matrix algebras. The involution $*$ on $A^{(c)}$ induces a permutation σ on the set of these algebras. The fixed points of σ bijectively correspond to the self-dual irreducible c-representations of G. The free orbits of σ give rise to $*$-subalgebras of $A^{(c)}$ of type $B=\operatorname{Mat}_{d}(F) \times \operatorname{Mat}_{d}(F)$, where d is invertible in F and the involution $*$ on B acts by $\left(P_{1}, P_{2}\right) \mapsto\left(P_{2}^{\mathrm{Tr}}, P_{1}^{\mathrm{Tr}}\right)$ for $P_{1}, P_{2} \in \mathrm{Mat}_{d}(F)$. A computation similar to the one in [11, Theorem 4.2] shows that $I_{(B, *)}(M)=0$. The rest of the argument goes as in the oriented case.

Remark 4.4. For $c=1$, Formula (4.1) may be rewritten as

$$
\# \operatorname{Hom}\left(\pi_{1}(M), G\right)=\# G \sum_{\rho \in \widehat{G}}\left(\frac{\varepsilon_{\rho} \# G}{\operatorname{dim} \rho}\right)^{-\chi(M)}(\bmod p)
$$

where $p \geq 0$ is the characteristic of F and \widehat{G} is the set of irreducible linear representations of G over F considered up to linear equivalence.

Remark 4.5. Consider in more detail the case $M=P^{2}$. The group $\pi=\pi_{1}\left(P^{2}\right)$ is a cyclic group of order 2 so that the homomorphisms $\pi \rightarrow G$ are numerated by elements of the set $S=\left\{g \in G \mid g^{2}=1\right\}$. Any $g \in S$ gives rise to a (non-homogeneous) generator $[g \mid g]$ of the normalized bar-complex of G. This generator is a cycle modulo 2 since $\partial[g \mid g]=2[g]-\left[g^{2}\right]=0(\bmod 2)$. For $\alpha \in H^{2}(G ; \mathbb{Z} / 2 \mathbb{Z})$ and any mapping $f: P^{2} \rightarrow K(G, 1)$, we have $\left\langle f^{*}(\alpha),\left[P^{2}\right]\right\rangle=\alpha([g \mid g])$, where $g \in G$ is the value of the induced homomorphism $f_{\#}: \pi \rightarrow G$ on the non-trivial element of π and $\alpha([g \mid g])$ is the evaluation of α on the 2 -cycle $[g \mid g]$. Therefore

$$
Z_{\alpha}\left(P^{2}\right)=(\# G)^{-1} \sum_{g \in S}(-1)^{\alpha([g \mid g])} .
$$

If α is represented by a normalized 2-cocycle $c: G \times G \rightarrow\{ \pm 1\} \approx \mathbb{Z} / 2 \mathbb{Z}$, then

$$
(-1)^{\alpha([g \mid g])}=c(g, g) \quad \text { and } \quad Z_{[c]}\left(P^{2}\right)=(\# G)^{-1} \sum_{g \in S} c(g, g) .
$$

Formula (4.1) can now be rewritten as

$$
\sum_{\rho \in \widehat{G}_{c}} \varepsilon_{\rho} \operatorname{dim} \rho=\sum_{g \in S} c(g, g)(\bmod p),
$$

where $p \geq 0$ is the characteristic of F. For $c=1$, this gives

$$
\sum_{\rho \in \widehat{G}} \varepsilon_{\rho} \operatorname{dim} \rho=\# S(\bmod p) .
$$

References

[1] K.S. Brown, Cohomology of Groups, in: Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, Berlin, 1982.
[2] R. Dijkgraaf, E. Witten, Topological gauge theories and group cohomology, Comm. Math. Phys. 129 (1990) 393-429.
[3] D. Freed, Higher algebraic structures and quantization, Comm. Math. Phys. 159 (2) (1994) 343-398.
[4] D. Freed, F. Quinn, Chern-Simons theory with finite gauge group, Comm. Math. Phys. 156 (1993) 435-472.
[5] M. Fukuma, S. Hosono, H. Kawai, Lattice topological field theory in two dimensions, Comm. Math. Phys. 161 (1) (1994) $157-175$.
[6] G. Jones, Enumeration of homomorphisms and surface-coverings, Q. J. Math. 46 (2) (1995) 485-507.
[7] V. Karimipour, A. Mostafazadeh, Lattice topological field theory on nonorientable surfaces, J. Math. Phys. 38 (1997) 49-66.
[8] G. Karpilovsky, Projective Representations of Finite Groups, in: Monographs and Textbooks in Pure and Applied Mathematics, vol. 94, Marcel Dekker, Inc., New York, 1985.
[9] A.D. Mednykh, Determination of the number of nonequivalent coverings over a compact Riemann surface, Dokl. Akad. Nauk SSSR 239 (1978) 269-271. English translation: Sov. Math. Dokl. 19 (1978) 318-320.
[10] A.D. Mednykh, On the solution of the Hurwitz problem on the number of nonequivalent coverings over a compact Riemann surface, Dokl. Akad. Nauk SSSR 261 (1981) 537-542. English translation: Sov. Math. Dokl. 24 (1981) 541-545.
[11] N. Snyder, Mednykh's formula via lattice topological quantum field theories. math/0703073.
[12] V. Turaev, Homotopy field theory in dimension 2 and group-algebras. math/9910010.
[13] M. Wakui, On Dijkgraaf-Witten invariant for 3-manifolds, Osaka J. Math. 29 (4) (1992) 675-696.

[^0]: ${ }^{\text {* Corresponding address: Department of Mathematics, Indiana University, Rawles Hall, } 831 \text { East 3rd Street, Bloomington, IN 47405, USA. }}$
 E-mail address: vturaev@yahoo.com.

